The numeric connections of the genetic code

Jean-Yves BOULAY
Independent researcher - 25 rue Pierre Loti 97430 LE TAMPON jean-yvesboulay@orange.fr

INTRODUCTION

$$
\begin{aligned}
& \text { The number of protons contained in every amino acid and the configuration of } \\
& \text { DNA bases of their respective genetic coding are connected by numeric } \\
& \text { phenomena. } \\
& \text { These phenomena consist into effects of multiples of prime numbers including the } \\
& \text { totality of the relations enters the configuration of the genetic code (} 64 \text { codons) } \\
& \text { and the values of the numbers of protons (or atomic numbers) in the } 64 \text { coded } \\
& \text { amino acids (} 61 \text { amino acids and } 3 \text { stop). } \\
& \text { These phenomena describe important effects of a symmetry as for their } \\
& \text { distributions in the table of the genetic code. } \\
& \text { These phenomena of symmetric multiples imply prime numbers: } \\
& 7-11-13
\end{aligned}
$$

Study technical depiction

The presented phenomena concern the total protons number included in the radical + in the base of the 64 coded amino acids (61 amino acids and 3 stop). Example for the serine: 17 protons (radical) +39 protons (common base) $=56$ protons.

Common amino acids structure (for example here SER)		
radical	base	Complete AA

Specificity of the proline:

The amino acid proline, has a very particular structure. It is the only among all whose radical has a even number of protons. All other amino acids have an odd radical and organized on the common base (39 protons: also odd) form all a
complete molecule possessing a even number of protons. The proline should lose a proton (a hydrogen) during its association on the base to form too a molecule in even number of protons. It is also the only amino acid with two electronic liaisons between the radical and the base.

So, in this study, it is accounted for the proline 24 protons in the radical zone +39 protons in the base zone, so a total number of protons equal to 63. It is the total number of protons of the proline's radical + the one included in the common base of alls the amino acids.

Without this special account, the totality of the very numerous phenomena described in this study are completely destroyed.

The proline is also, and not by chance, in the centre of numerous presented phenomena.

Study technical depiction

In this study, the relations " codon-coded " are described mainly so:

Three letters CCG	$\mathbf{9 4}$
The codon	Total of protons
being described by three DNA bases	Being contained in the coded amino acid radical + in the base of amino acid (not gathered chemically)

Example of a codon and a coded (here the arginine) constituted of:

Atom	atoms number	protons number	Total protons number
Hydrogen	$\mathbf{1 4}$	14	
Carbon	6	36	$\mathbf{9 4}$
Nitrogen	4	28	in the coded amino acid
Oxygen	2	16	radical + in amino acid base
Sulphur	0	0	

Systematically, it seems that the coded are identical if the final base of the codon is \mathbf{A} either \mathbf{G} or if this base is T or C. This except for a named group the rebel group : ATA72, ATG80, TGG108 and TGA (STOP). The total protons number of this group is 260: 20 times prime number 13.
The rebel group set apart, codons code for the same coded if and only if their last base is or A or G or T or C.
In this group: was coded ATG80, the methionine, the fundamental sulphured amino acid (ATG is the initiator codon). Also in this group: was coded TGG108, the tryptophan (the more large protons number coded). Also in this group: was coded TGA (STOP).

VERY IMPORTANT ESTABLISHED PHENOMENA

The rebel group set apart, the codons code for the same coded
\Rightarrow if and only if their last base is A or G
$\Rightarrow \quad$ if and only if their last base is T or C

FIRST PART OF THE STUDY NO INCLUDING THE REBEL GROUP INTO ACCOUNTS

First part study technical introduction

The following table describes the whole genetic code: the three bases of the codon, the coded amino acid and the number of protons contained in the coded amino acid. In fat the totals accumulated by protons appear. The values of the rebel group are not taken into accounts.

Table of the genetic code									
$\begin{array}{ll} \text { AAA } & \text { LYS } \\ \text { AAG } & \text { LYS } \\ \text { AAT } & \text { ASN } \\ \text { AAC } & \text { ASN } \end{array}$	80	GAA GLU	78	TAA STOP	0	CAA GLN	78	236	
	80	GAG GLU	78	TAG stop	0	CAG GLN	78	236	
	70	GAT ASP	70	TAT TYR	96	Cat his	82	318	
	70	GAC ASP	70	TAC TYR	96	CAC HIS	82	318	
	300		296		192		320		1108
AGA ARG AGG ARG AGT SER AGC SER	94	GGA GLY	40	TGA Stop	0	CGA ARG	94	228	
	94	GGG GLY	40	TGG TRP	108	CGG ARG	94	228	
	56	GGT GLY	40	TGT CYS	64	CGT ARG	94	254	
	56	GGC GLY	40	TGC CYS	64	CGC ARG	94	254	
	300		160		128		376		964
ATA ILE ATG MET ATT ILE ATC ILE	72	GTA VAL	64	TTA LEU	72	CTA LEU	72	208	
	80	GTG VAL	64	TTG LEU	72	CTG LEU	72	208	
	72	GTT VAL	64	TTT PHE	88	CTT LEU	72	296	
	72	GTC VAL	64	TTC PHE	88	CTC LEU	72	296	
	144		256		320		288		1008
ACA THR ACG THR ACT THR ACC THR	64	GCA ALA	48	TCA SER	56	CCA PRO	63	231	
	64	GCG ALA	48	TCG SER	56	CCG PRO	63	231	
	64	GCT ALA	48	TCT SER	56	CCT PRO	63	231	
	64	GCC ALA	48	TCC SER	56	CCC PRO	63	231	
	256		192		224		252		924
1000			904		864		236		4004

Distribution of the total number of protons (excluded the rebel group)				
Base rank	Base A	Base G	Base T	Base C
Rank 1	$\mathbf{1 0 0 0}$	$\mathbf{9 0 4}$	$\mathbf{8 6 4}$	$\mathbf{1 2 3 6}$
Rank 2	$\mathbf{1 1 0 8}$	$\mathbf{9 6 4}$	$\mathbf{1 0 0 8}$	$\mathbf{9 2 4}$
Rank 3	$\mathbf{9 0 3}$	$\mathbf{9 0 3}$	$\mathbf{1 0 9 9}$	$\mathbf{1 0 9 9}$

In most of the next descriptions, this table is represented compressed.
The ranks of codons bases are always classified in the same order: A G T C A box is the total sum (protons number) of 4 coded with the identical 2 first DNA bases.

Phenomena of multiples $(7,11$ and 13$)$ according to the rank of the base

The total number of protons of all the coded and the excluded rebel group is:

$$
4004=2^{2} \times 7 \times 11 \times 13
$$

Of very numerous numeric phenomena of symmetric multiples of these last three prime numbers connect the structure of amino acids to the general configuration of the genetic code. The phenomena implying the prime number $\mathbf{7}$ are here most significant.

These values groups organize in multiples of prime numbers 13, 7 and 11				
rank 1 rank 2 rank 3	G	T C		rank 1 rank 2 rank 3
	904	864	1236	
		1008	924	
	903	1099	1099	
$\begin{aligned} 1000+1236 & =172 \times 13 \\ 904+\quad 864 & =136 \times 13 \end{aligned}$	$1108+964=296 \times 7$		$903+$	$099=182 \times 11$
			$903+$	$099=182 \times 11$
Rank by rank, all the sums of bases \mathbf{A} and \mathbf{G} and \mathbf{T} and \mathbf{C} are multiple of 7				
$\begin{gathered} 1000+904=272 \times 7 \\ 1108+964=296 \times 7 \\ 903+903=258 \times 7 \end{gathered}$		$\begin{aligned} \hline 864+1236 & =300 \times 7 \\ 1008+924 & =276 \times 7 \\ 1099+1099 & =314 \times 7 \end{aligned}$		
Also, $\mathbf{5 0} \%$ of the individual values are multiple of 7		The other 50% are regularly multiple of 7 in 1 , in 2 and in 3 near		
$\begin{gathered} 1008=144 \times 7 \\ 924=132 \times 7 \\ 903(\text { base } A)=129 \times 7 \\ 903(\text { base } G)=129 \times 7 \\ 1099(\text { base } T)=157 \times 7 \\ 1099(\text { base } C)=157 \times 7 \end{gathered}$		$\begin{gathered} 1000=(143 \times 7)-1 \\ 904=(129 \times 7)+1 \\ 1108=(157 \times 7)+2 \\ 964=(138 \times 7)-2 \\ 864=(123 \times 7)+3 \\ 1236=(177 \times 7)-3 \end{gathered}$		

These values are not distributed at random but grouped together : the exact multiple values of 7 (in 0 near) concern the third whole rank (base A, G, T and C) and half of the second rank (base T and C).

Base rank	Base A	Base G	Base T	Base C
Rank 1	$1000(-1)^{*}$	$904(+1) *$	$864(+3) *$	$1236(-3) *$
Rank 2	$1108(+2) *$	$964(-2)^{*}$	1008	924
Rank 3	903	903	1099	1099

[^0]Condensed phenomena (summary) of these multiples of the prime number 7 :

col	mul sum			$\begin{aligned} & \text { s of } \\ & \text { prin } \\ & +2 \end{aligned}$		$\text { s } 3$ 272		Sums of lines 1 + $2 \quad$ lines $3+4$ are multiples of the prime number 7 sum of lines $\mathbf{1 + 2 = 7 \times 2 9 6}$							
$\begin{aligned} & \text { AA } \\ & 300 \end{aligned}$	$\begin{array}{\|c} \mathrm{GA} \\ 296 \end{array}$	$\begin{gathered} \text { TA } \\ 192 \end{gathered}$	$\begin{array}{r} C A \\ 320 \\ \hline \end{array}$	$\begin{gathered} A A \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{GA} \\ 296 \\ \hline \end{gathered}$	$\begin{array}{r} \text { TA } \\ 192 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6 A \\ 320 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { AA } \\ \hline 300 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { GA } \\ 296 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { TA } \\ 192 \\ \hline \end{array}$	$\begin{array}{r} \text { CA } \\ 320 \\ \hline \end{array}$	$\begin{aligned} & \text { AA } \\ & 300 \end{aligned}$	$\begin{gathered} \text { GA } \\ 296 \end{gathered}$	$\begin{gathered} \text { TA } \\ 192 \end{gathered}$	$\begin{gathered} C A \\ 320 \end{gathered}$
$\begin{array}{\|c} 4 \mathrm{E} \\ 300 \\ \hline \end{array}$	GG 160	TG 128	CG 376	AG 300	GG	$\begin{gathered} \text { TG } \\ 128 \\ \hline \end{gathered}$	$\begin{array}{\|r\|} \hline \text { CE } \\ 376 \\ \hline \end{array}$	$\begin{array}{\|c\|} \mathrm{AG} \\ 300 \end{array}$	$\left\lvert\, \begin{gathered} \text { GG } \end{gathered}\right.$	$\begin{array}{\|c\|} \text { TG } \\ 128 \end{array}$	$\left.\begin{array}{\|c\|} \text { CG } \\ 376 \end{array} \right\rvert\,$	$\begin{aligned} & \text { AG } \\ & 300 \end{aligned}$	$\begin{gathered} \text { GG } \\ 160 \end{gathered}$	$\begin{aligned} & \text { TG } \\ & 128 \end{aligned}$	$\begin{aligned} & \text { CG } \\ & 376 \end{aligned}$
$\begin{array}{\|c} 18 T \\ 144 \\ \hline \end{array}$	GT 25.6	11 320	CT 288	AT 144	GT 256	TT 320	$\begin{array}{\|c\|} \hline \mathrm{CT} \\ 288 \\ \hline \end{array}$	AT 144	$\begin{gathered} \text { GT } \\ 256 \end{gathered}$	$\begin{gathered} \pi \\ 320 \end{gathered}$	$\begin{gathered} \hline \text { CT } \\ 288 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AT } \\ 144 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { GT } \\ 256 \\ \hline \end{array}$	$\begin{gathered} \hline T \\ 320 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CT } \\ 288 \\ \hline \end{array}$
$\begin{array}{r} 4 \mathrm{C} \\ 256 \\ \hline \end{array}$	$\begin{array}{\|c} G C \\ 192 \\ \hline \end{array}$	$\begin{aligned} & \text { TC } \\ & 224 \\ & \hline \end{aligned}$	$\begin{gathered} c c \\ 252 \end{gathered}$	$\begin{aligned} & A C \\ & 256 \end{aligned}$	$\begin{array}{\|c} \text { GC } \\ 192 \\ \hline \end{array}$	$\begin{array}{r} \text { TC } \\ 224 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{c\|} \mathrm{CE} \\ 252 \end{array}\right.$	$\begin{array}{\|c} \hline A C \\ 256 \\ \hline \end{array}$	$\begin{gathered} \text { GC } \\ 192 \\ \hline \end{gathered}$	$\begin{gathered} \text { TC } \\ 224 \\ \hline \end{gathered}$	$\begin{aligned} & C C \\ & 252 \end{aligned}$	$\begin{array}{\|c\|} \text { AC } \\ 256 \\ \hline \end{array}$	$\begin{array}{\|c} \text { GC } \\ 192 \\ \hline \end{array}$	$\begin{array}{r} \text { TC } \\ 224 \\ \hline \end{array}$	$\begin{array}{r} \text { CC } \\ 252 \\ \hline \end{array}$
sum of columns $3+4=7 \times 300$								sum of lines $3+4=7 \times 276$							

The sums of individual columns and individual lines are successively multiple of 7 (in 0 near), of 7 in 1 near, of 7 in 2 near and of 7 in 3 near. All possibilities of 7 multiples are represented in the genetic code table:
(8 possibilities in 4 lines and 4 columns).

sum of column $1=(7 \times 143)-1$								sum of column $3=(7 \times 123)+3$							
$\begin{array}{r} \text { AA } \\ 300 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { GA } \\ & 296 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { TA } \\ 192 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{CA} \\ & 320 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { AA } \\ & 300 \end{aligned}$	$\begin{gathered} \mathrm{GA} \\ 296 \end{gathered}$	$\begin{gathered} \hline \text { TA } \\ 192 \end{gathered}$	$\begin{aligned} & \mathrm{CA} \\ & 320 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { AA } \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GA } \\ & 296 \end{aligned}$	$\begin{gathered} \hline \text { TA } \\ 192 \end{gathered}$	$\begin{aligned} & \hline \mathrm{CA} \\ & 320 \end{aligned}$	$\begin{aligned} & \hline \mathrm{AA} \\ & 300 \end{aligned}$	$\begin{gathered} \hline \text { GA } \\ 296 \end{gathered}$	$\begin{gathered} \hline \text { TA } \\ 192 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CA } \\ 320 \end{array}$
$\begin{array}{r} \hline \mathrm{AG} \\ 300 \\ \hline \end{array}$	GG	$\begin{aligned} & \hline T G \\ & 128 \end{aligned}$	CG 376	$\begin{aligned} & \text { AG } \\ & 300 \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{GG} \\ 160 \end{array}$	$\begin{aligned} & \hline \text { TG } \\ & 128 \end{aligned}$	$\begin{aligned} & \text { CG } \\ & 376 \end{aligned}$	$\begin{aligned} & \hline \mathrm{AG} \\ & 300 \end{aligned}$	$\begin{gathered} \hline \text { GG } \\ 160 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { TG } \\ & 128 \end{aligned}$	$\begin{aligned} & \hline \text { CG } \\ & 376 \end{aligned}$	$\begin{aligned} & \hline \text { AG } \\ & 300 \end{aligned}$	$\begin{gathered} \hline \text { GG } \\ 160 \end{gathered}$	$\begin{gathered} \hline \text { TG } \\ 128 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CG } \\ 376 \end{array}$
$\begin{gathered} \hline \text { AT } \\ 144 \\ \hline \end{gathered}$	$\begin{gathered} \text { GT } \\ 256 \end{gathered}$	$\begin{aligned} & T T \\ & 320 \end{aligned}$	$\begin{gathered} \text { CT } \\ 288 \end{gathered}$	$\begin{gathered} \text { AT } \\ 144 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { GT } \\ 256 \\ \hline \end{array}$	$\begin{gathered} \pi \\ 320 \end{gathered}$	$\begin{gathered} C T \\ 288 \end{gathered}$	AT 144	$\begin{aligned} & \text { GT } \\ & 256 \end{aligned}$	$\begin{aligned} & \hline T \\ & 320 \end{aligned}$	$\begin{gathered} \hline \text { CT } \\ 288 \end{gathered}$	$\begin{gathered} \text { AT } \\ 144 \end{gathered}$	$\begin{gathered} \text { GT } \\ 256 \end{gathered}$	$\begin{gathered} \hline \pi \\ 320 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CT } \\ 288 \end{array}$
$\begin{array}{\|c\|} \hline A C \\ 256 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { GC } \\ 192 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { TC } \\ 224 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline C C \\ 252 \\ \hline \end{array}$	$\begin{gathered} \hline A C \\ 256 \end{gathered}$	$\begin{array}{\|c} \hline \text { GC } \\ 192 \\ \hline \end{array}$	$\begin{aligned} & \hline T C \\ & 224 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{CC} \\ 252 \\ \hline \end{array}$	$\begin{array}{r} \text { AC } \\ 256 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { GC } \\ 192 \\ \hline \end{array}$	$\begin{array}{r} \text { TC } \\ 224 \\ \hline \end{array}$	$\begin{aligned} & C C \\ & 252 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline A C \\ & 256 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GC } \\ & 192 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { TC } \\ 224 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline C C \\ 252 \\ \hline \end{array}$
sum of column $2=(7 \times 129)+1$								sum of column $4=(7 \times 177)-3$							
sum of line $1=(7 \times 157)+2$								sum of line $3=(7 \times 144)-0$							
$\begin{array}{\|c\|} \hline \mathrm{AA} \\ 300 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{GA} \\ 296 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { TA } \\ 192 \\ \hline \end{array}$	$\begin{array}{r} \text { CA } \\ 320 \\ \hline \end{array}$	$\overline{A A}$	$\begin{gathered} \text { GA } \\ 296 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TA } \\ 192 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{CA} \\ & 320 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { AA } \\ & 300 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { GA } \\ 296 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { TA } \\ 192 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{CA} \\ & 320 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline A A \\ & 300 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { GA } \\ 296 \\ \hline \end{array}$	$\begin{gathered} \hline \text { TA } \\ 192 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{CA} \\ & 320 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { AG } \end{aligned}$	$\begin{gathered} \text { GG } \\ 160 \end{gathered}$	$\begin{aligned} & \text { TG } \\ & 128 \end{aligned}$	$\begin{aligned} & \text { CG } \\ & 376 \end{aligned}$	$\begin{array}{\|c\|} \hline A G \\ 300 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { GG } \\ 160 \end{array}$	$\begin{array}{c\|} \hline \text { TG } \\ 128 \\ \hline \end{array}$	$\begin{array}{r} \hline \text { CG } \\ 376 \end{array}$	$\begin{aligned} & \hline \text { AG } \\ & 300 \end{aligned}$	$\begin{gathered} \mathrm{GG} \\ 160 \end{gathered}$	$\begin{aligned} & \hline \text { TG } \\ & 128 \end{aligned}$	$\begin{aligned} & \text { CG } \\ & 376 \end{aligned}$	$\begin{aligned} & \hline \text { AG } \\ & 300 \end{aligned}$	$\begin{gathered} \hline \text { GG } \\ 160 \end{gathered}$	$\begin{aligned} & \hline \text { TG } \\ & 128 \end{aligned}$	$\begin{gathered} \text { CG } \\ \hline 376 \end{gathered}$
$\begin{gathered} \text { AT } \\ 144 \end{gathered}$	$\begin{gathered} \text { GT } \\ 256 \\ \hline \end{gathered}$	$\begin{gathered} \pi \\ 320 \end{gathered}$	$\begin{gathered} \text { CT } \\ 288 \\ \hline \end{gathered}$	$\begin{gathered} \text { AT } \\ 144 \end{gathered}$	$\begin{gathered} \text { GT } \\ 256 \\ \hline \end{gathered}$	$\begin{gathered} \pi \\ 320 \end{gathered}$	$\begin{gathered} \hline C T \\ 288 \\ \hline \end{gathered}$	$\begin{aligned} & \text { AT } \\ & 144 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \text { GT } \\ 256 \\ \hline \end{array}$	$\begin{array}{r} \pi \\ 320 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { CT } \\ 288 \\ \hline \end{array}$	$\begin{gathered} \text { AT } \\ 144 \\ \hline \end{gathered}$	$\begin{gathered} \text { GT } \\ 256 \\ \hline \end{gathered}$	$\begin{gathered} \hline \pi \\ 320 \\ \hline \end{gathered}$	$\begin{gathered} C T \\ 288 \\ \hline \end{gathered}$
$\begin{array}{r} A C \\ 256 \\ \hline \end{array}$	$\begin{gathered} \text { GC } \\ 192 \\ \hline \end{gathered}$	$\begin{array}{r} \text { TC } \\ 224 \\ \hline \end{array}$	$\begin{gathered} C C \\ 252 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline A C \\ 256 \\ \hline \end{array}$	$\begin{array}{r} \text { GC } \\ 192 \\ \hline \end{array}$	$\begin{array}{r} \text { TC } \\ 224 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{CC} \\ 252 \\ \hline \end{array}$	$\begin{array}{r} A C \\ 256 \\ \hline \end{array}$	$\begin{gathered} \text { GC } \\ 192 \\ \hline \end{gathered}$	$\begin{gathered} \text { TC } \\ 224 \\ \hline \end{gathered}$	$\begin{gathered} C C \\ 252 \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{AC} \\ 256 \\ \hline \end{array}$	$\begin{array}{r} \text { GC } \\ 192 \\ \hline \end{array}$	$\begin{array}{r} \text { TC } \\ 224 \\ \hline \end{array}$	$\begin{array}{r} C C \\ 252 \\ \hline \end{array}$
sum of line $2=(7 \times 138)-2$								sum of line $4=(7 \times 132)+0$							

Phenomena of concentration of prime number 7 multiples to the proline genetic coding

The total of the $\mathbf{1 6}$ values (condensed by the main table of the genetic code) is multiple of the prime number 7 (4004 = 7×572) and:

This total is subdivided in $\mathbf{2}$ groups also multiple of $\mathbf{7}$					
$\begin{gathered} 300+296+192+320+ \\ 300+160+128+376= \\ 2072=7 \times 296 \end{gathered}$	$\begin{aligned} & A A \\ & 300 \end{aligned}$	$\begin{gathered} \text { GA } \\ 296 \end{gathered}$	$\begin{gathered} \text { TA } \\ 192 \end{gathered}$	$\begin{gathered} \text { CA } \\ 320 \end{gathered}$	8 values group multiple of 7:
	$\begin{gathered} \text { AG } \\ 300 \end{gathered}$	$\begin{gathered} \text { GG } \\ 160 \end{gathered}$	$\begin{gathered} \text { TG } \\ 128 \\ \hline \end{gathered}$	$\begin{gathered} \text { GG } \\ 376 \\ \hline \end{gathered}$	
	$\begin{gathered} \text { AT } \\ 144 \end{gathered}$	$\begin{gathered} \text { GT } \\ 256 \end{gathered}$	$\begin{gathered} \pi \\ 320 \end{gathered}$	$\begin{gathered} \text { CT } \\ 288 \end{gathered}$	
	$\begin{gathered} A C \\ 256 \end{gathered}$	$\begin{gathered} \text { GC } \\ 192 \end{gathered}$	$\begin{array}{r} \text { TC } \\ 224 \\ \hline \hline \end{array}$	$\begin{array}{r} \text { CG } \\ 252 \\ \hline \end{array}$	$\begin{gathered} 144+256+320+288+ \\ 256+192+224+252+ \\ 1932=7 \times 256 \end{gathered}$

and new division:					
```4 values group multiple of 7 :None```	$\begin{gathered} \text { AT } \\ 144 \\ \hline \end{gathered}$	$\begin{array}{r} \text { GT } \\ 256 \\ \hline \end{array}$	$\begin{gathered} T 1 \\ 320 \\ \hline \end{gathered}$	$\begin{gathered} \text { CT } \\ 288 \\ \hline \end{gathered}$	4 values group multiple of 7:$\begin{gathered} 256+192+224+252= \\ 924=7 \times 132 \end{gathered}$
	$\begin{gathered} A C \\ 256 \end{gathered}$	$\begin{gathered} \text { GC } \\ 192 \end{gathered}$	$\begin{gathered} \text { TC } \\ 224 \end{gathered}$	$\begin{gathered} \text { CC } \\ 252 \end{gathered}$	


and new division:				
2 values group multiple   of 7:   $\mathbf{2 5 6 + 1 9 2}=$   $\mathbf{4 4 8}=\mathbf{7 \times 6 4}$	AC GC   256 192	TC CC   224 252	$\mathbf{2 2 4 + 2 5 2 =}$	


and new division:				
1. value    group $\mathbf{2 2 4 =}=$   multiple of $\mathbf{7 \times 3 2}$   $7:$	$\begin{gathered} \text { TC } \\ 224 \end{gathered}$	$\begin{gathered} \text { CC } \\ 252 \end{gathered}$	1 value group multiple of 7:	$\begin{aligned} & 252= \\ & 7 \times 36 \end{aligned}$

It appears so in this configuration of 7 multiples, a regular phenomenon of more and more strong concentration to the coding of the proline:

16 values group multiple...																	
						$\begin{aligned} & 300 \\ & \hline 300 \\ & \hline \end{aligned}$		296	192	320							
								160	128	376							
						144		256	320	288							
						256		192	224	252							
$572 \times 7$																	
...then twice 8 values groups...				...then twice 4 values groups...						...twice 2 values groups...				and finally twice 1 value group!			
300	296	192	320	300	296	192	320			300	296	192	320	300	296	192	320
300	160	128	376	300	160	128	376			300	160	128	376	300	160	128	376
144	256	320	288	144	256	320	288			144	256	320	288	144	256	320	288
256	192	224	252	256	192	224	252			256	192	224	252	256	192	224	252
$256 \times 7$				$132 \times 7$						$68 \times 7$				$36 \times 7$			

The probability of existence of this configuration in a square with 16 boxes ( 16 values) is $\mathbf{1 / 1 6 3 0 7}$ $\left(1 / \mathbf{7}^{5}\right)$ ! This phenomenon concentrates to the coding of the proline, the amino acid the peculiarities of which described in introduction can not be without report with these observations.
$\Rightarrow$ Curiously (but certainly not by chance), the box value coding for the proline (252) is the nearest value (among all 16 values) to the 16 values average : the 16 values average $=$

$$
4004 / 16=250.25
$$

The orderly last one of this table is the only one where, every time, four codons code for the same amino acid
$\left.\begin{array}{|lll|lll}\hline \text { ACA } & \text { THR } & 64 & \text { GCA } & \text { ALA } & 48 \\ \text { ACG } & \text { THR } & 64 & \text { GCG } & \text { ALA } & 48 \\ \text { ACT } & \text { THR } & 64 & \text { GCT } & \text { ALA } & 48 \\ \text { ACC } & \text { THR } & 64 & \text { GCC } & \text { ALA } & 48\end{array}\left|\begin{array}{lll}\text { TCA } & \text { SER } & 56 \\ \text { TCG } & \text { SER } & 56 \\ \text { TCT } & \text { SER } & 56 \\ \text { TCC } & \text { SER } & 56\end{array}\right| \begin{array}{lll|}\hline \text { CCA } & \text { PRO } & 63 \\ \text { CCG } & \text { PRO } & 63 \\ \text { CCT } & \text { PRO } & 63 \\ \text { CCC } & \text { PRO } & 63\end{array}\right]$

Both basic values ( $\mathbf{6 4}$ and 48) left boxes (AC-and GC-) are multiple of $\mathbf{7}$ in one near. Both mutual values with right boxes ( $\mathbf{5 6}$ and $\mathbf{6 3}$ ) both are multiple exact of 7 . The more and more strong concentration of multiples of 7 towards these last two boxes of the table of the genetic code can so have a report with a stability of the coding of amino acids aiming towards four codons for one amino acid. This phenomenon concentrated on the proline to a direct report with another associated phenomenon:

## VERY IMPORTANT ESTABLISHED PHENOMENA

The phenomenon of concentration of multiples of 7 to the proline coding has a link with the number of coded contained in every box (first two identical bases). At the top of the table, 8 boxes are necessary to form a multiple of 7 and $25 \%$ of these boxes ( 2 boxes) code only for the coded only one. Then, on 4 boxes forming a multiple of 7,2 boxes ( $50 \%$ ) code for the coded only one. Both following boxes forming a multiple of 7 code in $100 \%$ for the coded only one and it's the same for the 2 remaining boxes where concentrates this double phenomenon:
multiple of $\mathbf{7}$ and a single coded amino acid.

## Associations "multiples of 7 and number of coded by box"

The phenomenon of concentration of multiple of 7 to the proline coding has a link with the number of coded contained in every box (first two identical bases): (The rebel group is not booked.)


Phenomena of diagonals associating to the proline genetic coding


The total of every diagonal of the table of the genetic code since the first box (first and second base A) up to the last one (first and second base C) is always multiple of $\mathbf{7}$ in one near. Safe for this last box: that coding for the proline.

These diagonals join among them and form groups of $1,3,5$ and 7 boxes the totals of which are multiple of 7. The box of the proline, being already multiple of 7, remains alone and can not moreover join with the other diagonals (odd number of diagonals). By separating the boxes values among the coded codons of which have finales $\mathbf{A}$ and $\mathbf{G}$ and those codons of which have finales $\mathbf{T}$ and $\mathbf{C}$, the phenomena of multiples of $\mathbf{7}$ are protected. This, although the values (and the coded) are different in both sub-tables.


## Phenomena of multiples of the prime number 11 associated to the number of coded by box

Here, phenomena implicate the prime number 11 are most significant.
The sums of 8 values of 4 symmetric groups are multiple of $\mathbf{1 1}$.
The sums of 8 values of 2 symmetric groups are multiple of 11 and multiple of 7.
The sums of 8 values of the 2 symmetric other groups are multiple of 11 and multiple of 13.
Inside these symmetric groups of 8 values and multiple of $\mathbf{1 1}$, others subgroups of 4 perfectly symmetric and additional values are also multiple of $\mathbf{1 1}$.


It is not possible that these phenomena are to be by chance. These phenomena are connected to the number of coded by box (codons with the two first DNA bases identical).

Associations of these phenomena of symmetric multiples of the prime number 11 with the number of coded by box : Curious phenomenon, in each subgroup of 4 values ( 4 boxes) systematically, 2 boxes represent one only coded.


| Superposition of the two configurations |  |  |  |  |
| :---: | ---: | :---: | :---: | :---: | :---: |
| The configuration with boxes representing <br> one only coded is not symmetrical but the <br> superposition with the symmetrical sub <br> groups of 11 multiples form regularly <br> associations of 4 boxes with 2 boxes <br> representing + of one coded and 2 boxes <br> representing one only coded! | 300 296 | $\mathbf{1 9 2}$ | $\mathbf{3 2 0}$ |  |

By permuting two by two, into each sub group, 2 boxes of one only coded and 2 boxes of + one coded, appears new configurations also multiple of 11.


## Others phenomena of multiples of prime numbers 7, 11 and 13

In the following configuration, associations of multiples of prime numbers 13, $\mathbf{1 1}$ and $\mathbf{7}$ are progressive from 7 to 13 . Here, the boxes values stand apart between codons by final AG and codons by final TC.


In this configuration, the total sum $\mathbf{4 0 0 4}$ is multiple of prime numbers 13, 11 and 7. The subtotal sums $\mathbf{1 7 1 6}$ and $\mathbf{2 2 8 8}$ are multiple of $\mathbf{1 3}$ and $\mathbf{1 1}$ and multiple of $\mathbf{7}$ in $\mathbf{1}$ near.

The subtotal sums 936 and 1066 are multiple of $\mathbf{1 3}$, multiple of $\mathbf{1 1}$ in $\mathbf{1}$ near and multiple of $\mathbf{7}$ in 2 near.

The subtotal sums $\mathbf{7 8 0}$ and $\mathbf{1 2 2 2}$ are multiple of $\mathbf{1 3}$, multiple of $\mathbf{1 1}$ in $\mathbf{1}$ near and multiple of $\mathbf{7}$ in 3 near.

The two sums 2002 (multiple of 13, 11 and 7) are identical but represent not identical coded! Phenomena presentation in the genetic code table:

Configurations multiple of 13, 11 and 7						
$2002=2 \times 7 \times 11 \times 13$			$2002=2 \times 7 \times 11 \times 13$			
Identical sums but not identical coded !						
AA/AG GA/AG   160 156   A	$\begin{gathered} \hline \text { TA/AG } \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline C A / A G \\ 156 \\ \hline \end{array}$	AA/ $/ \mathrm{AG}$   160   A/ $/ \mathrm{c}$	GA/AG	TA/AG	CA/AG 156
AR/TC    140 GA/TC   140	TA/TC	$\bigcirc$	AA/TC 140	$\begin{array}{\|c\|} \hline \text { GA/TC } \\ \hline 140 \\ \hline \end{array}$	$\begin{gathered} \text { TA/TG } \\ 192 \\ \hline \end{gathered}$	${ }_{\text {c/ } / \text { /TC }}$
$A G / A G$ $66 / A G$   188 80   8	\|ti/AG	$\mathrm{CG} / \mathrm{AG}$   188	AG/AG   188	[GG/AG	TG/AG	cG/AG
	TG/TC	c6/TG	Ag/TC 112	G6/TC	$\begin{array}{\|c\|} \hline T 6 / 96 \\ \hline 120 \\ \hline \end{array}$	
$1 / 2 T / A G$ GT/AG   0 128   AT/ $1 / 20$	$\begin{gathered} \Pi / A G \\ 144 \end{gathered}$	$\begin{gathered} C T / A G \\ 144 \\ \hline \end{gathered}$	AT/AG	\|ct/Ag	$\begin{gathered} T / \beta G \\ \hline 144 \\ \hline \end{gathered}$	CT/AG   144
	T1/TC	CT/TC	AT/TC	$\begin{array}{\|c\|} \hline \text { GT/TC } \\ \hline 128 \\ \hline \end{array}$	$\begin{array}{\|c\|} 144 \\ \hline T T / T 6 \\ \hline 176 \\ \hline \end{array}$	$\frac{144}{C T / T C}$
$A C / A G$ $60 / A G$   128 96   $A / 12$	$\begin{gathered} \mathrm{TC} / \mathrm{AG} \\ 112 \\ \hline \end{gathered}$	$C / A G$   126	AC/'AG   128	${ }_{\text {GC/ } / 8 \mathrm{Ca}}$	TC/AG	CC/AG
$\mathrm{AC} / \mathrm{TC}$ $\mathrm{GC/TC}$   128 96	TC/TC	cc/Tc	$\begin{array}{c\|} \hline \mathrm{AC/TC} \\ 128 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6 C / T C \\ 96 \\ \hline \end{array}$	$\begin{gathered} \text { TC/TC } \\ \hline 112 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CC} / \mathrm{TC} \\ 126 \\ \hline \end{gathered}$
780		1222	936			1066
$=60 \times 13$		$=94 \times 13$	$=72 \times 13$			$=82 \times 13$
(71x11)-1 (111×7)+3	(111×	$\times 11)+1(175 \times 7)-3$	$(85 \times 11)+1(134 \times 7)$	7)-2	(97x	11)-1 (152x7)+2


Configurations multiple of 13 and 11 (and 7 in 1 near)							
$1716=$				$2288=$			
$\begin{gathered} 132 \times 13 \text { or } 156 \times 11 \\ \text { or }(245 \times 7)+1 \\ \hline \end{gathered}$				$\begin{gathered} =176 \times 13 \text { or } 208 \times 11 \\ \text { or }(327 \times 7)-1 \end{gathered}$			
$\begin{array}{\|c\|} \hline A A / A G \\ \hline 160 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{GA} / \mathrm{AG} \\ 156 \\ \hline \end{array}$	$\begin{gathered} T A / A G \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline C A / A G \\ 156 \\ \hline \end{array}$		$\begin{gathered} \mathrm{GA} / \mathrm{AG} \\ 156 \\ \hline \end{gathered}$	$\begin{gathered} \text { TA/AG } \\ 0 \end{gathered}$	$\begin{gathered} \hline C A / A G \\ 156 \\ \hline \end{gathered}$
AA/TC   140	$\begin{gathered} \text { GATTC } \\ 140 \end{gathered}$	$\begin{gathered} \text { TARTC } \\ 192 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CA/TC } \\ 164 \\ \hline \end{array}$	AA/TC   140   $A 80$	$\begin{gathered} \text { GA/TC } \\ 140 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { TA/TC } \\ \hline 192 \\ \hline \end{array}$	$\begin{gathered} \mathrm{CA} / \mathrm{TC} \\ 164 \\ \hline \end{gathered}$
$\begin{array}{\|c\|} \hline A G / A G \\ 188 \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{GE} / \mathrm{AG} \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{TG} / \mathrm{Ag} \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline 6 \mathrm{G} / \mathrm{AG} \\ 188 \\ \hline \end{array}$	AG/AG   188   $A G 7$	$\begin{gathered} \mathrm{GG} / \mathrm{AG} \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} \text { TG/AG } \\ 0 \end{gathered}$	$\begin{gathered} \hline \mathrm{CG} / \mathrm{AG} \\ 188 \\ \hline \end{gathered}$
$\begin{array}{\|c\|} \hline \mathrm{AG} / \mathrm{TC} \\ \hline 112 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|c\|} \hline 69 / 90 \\ \hline 80 \end{array}$	$\begin{array}{\|c} \hline \text { TG/TC } \\ 128 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { CGTGC } \\ 188 \\ \hline \end{array}$	AG/TC   112   $1 / 2 \mathrm{c}$	$\begin{gathered} \mathrm{GG} / \mathrm{TC} \\ 800 \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{TG}_{\boldsymbol{\prime}} / \mathrm{TC} \\ 120 \\ \hline \end{array}$	$\begin{gathered} \mathrm{CG}, \mathrm{TC} \\ 180 \\ \hline \end{gathered}$
AT/AG 0	$\begin{array}{\|c\|} \hline \mathrm{GT} / \mathrm{AG} \\ 128 \\ \hline \end{array}$	$\begin{gathered} \pi / A G \\ \hline 144 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{CT} / \mathrm{AG} \\ 144 \\ \hline \end{array}$	AT/AG	$\begin{gathered} \mathrm{GT} / \mathrm{AG} \\ 128 \\ \hline \end{gathered}$	$\begin{gathered} \pi / 46 \\ 144 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{CT} / \mathrm{AG} \\ 144 \\ \hline \end{array}$
$\begin{array}{\|c\|} \hline \mathrm{AT} / \mathrm{TC} \\ 144 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 6 T / T C \\ \hline 128 \\ \hline \end{array}$	$\begin{gathered} \text { TITC } \\ 176 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CT/TC } \\ 144 \\ \hline \end{array}$	$\begin{gathered} \mathrm{ATTO} \mathrm{C} \\ 144 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{GT} / \mathrm{TC} \\ 128 \\ \hline \end{gathered}$	$\begin{gathered} \pi / \mathrm{TC} \\ 1776 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CT} / \mathrm{TC} \\ 144 \end{gathered}$
AC/AG	${ }_{\text {GC/AG }}^{96}$	$\begin{gathered} \mathrm{TC} / \mathrm{Ag} \\ 112 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CO} / \mathrm{Ag} \\ 126 \\ \hline \end{gathered}$	AC/AG   128	$\begin{gathered} \mathrm{GC/AG} \\ 96 \end{gathered}$	$\begin{gathered} \text { TC/AG } \\ 112 \\ \hline \end{gathered}$	$\begin{gathered} \hline C C / A G \\ 126 \\ \hline \end{gathered}$
AC/TC	60/T9	TC/TC	CC/TC	AC/TC   128	GC/TC	${ }_{\text {TC/ }} 112$	cc/TC

These previous configurations of multiples of prime number 13 implicate numerous others configurations of symmetric multiples with symmetric sub configurations systematically multiple of 13 in 1 near !

These phenomena presented here shows all the philosophy emanating of this study on the genetic code: very large and subtle sophistication of fitting of numerical phenomena connecting codons with the coded.

In order to not complicate the presentation of the phenomena too much, only some configurations are presented here.

Some configurations of symmetric 13 multiples with symmetric sub configurations systematically multiple of 13 in 1 near:

configurations different but even total sums:

$1716=132 \times 13$				2288 = $176 \times 13$			
AA/AG   160	GA/AG	TA/AG	CA/AG $156$	AA/AG	GA/AG $156$	TA;AG	$\mathrm{CA} / \mathrm{AG}$
AA/TC	GA/TC	TA/TC	CA/TC	AP/TC	GA/TC	TA/TC	CA/TC
140	140	192	164	140	140	192	164
$\frac{188}{\text { AG/TG }}$	GG/TC	TG/TC	c9/TC	188/TC	gg/Tc	TG/TC	CG/TC
112	80	128	188	112	80	128	188
AT/AG	GT/AG	TT/AG	CT/AG	AT/AG	GT/AG	T/AG	CT/AG
-	128	144	144	0	128	144	144
AT/TC	GT/TC	TT/TO	CT/TC	AT/TC	GT/TC	T/TC	CT/TC
144	128	176	144	144	128	176	144
AC/AG	GC/AG	TC/AG	CC/AG	AC/AG	GC/AG	TL/AG	CC/AG
128:	96	112	126	128	96	112	126
AC/TC	GC/TC	TC/TC	CC/TC	AC/TC	GC/TC	TC/ $/ \mathrm{TC}$	CC/TC
120:	96	112	126	128	96	112	126
$636=49 \times 13-1$		$1080=83 \times 13+1$		$1080=83 \times 13+1$		$1208=93 \times 13-1$	

Others subtle configurations:

$2236=172 \times 13$				$1768=136 \times 13$			
$\begin{gathered} A A / A G \\ 160 \end{gathered}$	GA/AS	$\begin{gathered} \text { TA/AG } \\ 0 \end{gathered}$	$\begin{array}{c\|} \hline C A / A G \\ \hline 156 \\ \hline \end{array}$	AA/AG 160	$\begin{aligned} & \mathrm{GA} / \mathrm{AG} \\ & 156 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { TA/AG } \\ 0 \end{array}$	$\begin{gathered} \text { CA/AG } \\ 156 \\ \hline \end{gathered}$
AA/TC	GA/TC	$\begin{gathered} \text { TATG } \\ 192 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CA} / \mathrm{TC} \\ \hline 164 \end{gathered}$	AA/TC   140	GA/TC	$\begin{array}{c\|} \hline \mathrm{TA}_{1} \mathrm{TC} \\ 192 \end{array}$	CA/TC 16.4
AG/AG   188	GG/AG   80	TG/AG	$\begin{gathered} \hline \text { CG/AG } \\ \hline 188: \\ \hline \end{gathered}$	AG/AG   188	$\underbrace{\text { GG/ } / \text { ag }}_{80}$	$\mathrm{TG} / \mathrm{AG}$	$\begin{gathered} \text { CG/AG } \\ 188 \end{gathered}$
$\begin{gathered} \mathrm{AG} / \mathrm{TC} \\ 112 \end{gathered}$	$\begin{gathered} 66 / \mathrm{TC} \\ \hline 80 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { TGTG } \\ 129 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CG} / \mathrm{TC} \\ 18: 8 \mathrm{~F} \\ \hline \end{gathered}$	AG/TC   112	$\begin{array}{\|c} \mathrm{GG} / \mathrm{TC} \\ \hline 80 \\ \hline \end{array}$	$\begin{gathered} \mathrm{TG}_{1} / \mathrm{TC} \\ 120 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 6 \mathrm{G} / \mathrm{TC} \\ \hline 189 \\ \hline \end{array}$
AT/AG	GT/AG 128	$\begin{gathered} T T / A G \\ 144 \\ \hline \end{gathered}$	$\begin{gathered} C T / A G \\ \hline 144 \\ \hline \end{gathered}$	AT/AG ${ }_{0}$	$\begin{array}{\|c} \hline \text { GT/AG } \\ 128 \\ \hline \end{array}$	$\begin{gathered} \text { W/AG } \\ \hline 144 \end{gathered}$	$\begin{gathered} \hline \mathrm{CT} / \mathrm{AG} \\ 144 \\ \hline \end{gathered}$
AT/TC 144	$\begin{array}{\|c} 9 T / T 0 \\ 128 \\ \hline \end{array}$	$\begin{gathered} 1 / 76 \\ 176 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CT} / \mathrm{TC} \\ 144 \\ \hline \end{gathered}$	AT/TC	GT/TC	17/TC	${ }_{\text {cT/TC }}$
$\begin{gathered} \text { AC/AG } \\ 128 \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{ClAG} \\ 96 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TC'AG } \\ 112 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \alpha, / A G \\ 126 \end{array}$	AC/AG   128	$\begin{gathered} \text { GC/AG } \\ \hline 96 \\ \hline \end{gathered}$	$\begin{array}{c\|} \text { TC/AG } \\ 112 \\ \hline \end{array}$	$\begin{gathered} 1+7 \\ \hline \mathrm{COAG} \\ \hline 126 \\ \hline \end{gathered}$
AC/TC   128	$\begin{gathered} \mathrm{GC/TC} \\ 96 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TC/TC } \\ \hline 112 \\ \hline \end{array}$	$\begin{gathered} \mathrm{CC} / \mathrm{TC} \\ \hline 126 \\ \hline \end{gathered}$	AC/TC 128	$\mathrm{Cl}_{96}^{\text {GC }}$	TC/TC	CC/TC 126
$1000=77 \times 13$	-1	123	$36=95 \times 13+1$	$716=55 \times 13$	+1	105	$2=81$


$2236=172 \times 13$				$1768=136 \times 13$			
$\begin{gathered} A A / A G \\ 160 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{GA} / \mathrm{AG} \\ 156 \\ \hline \end{array}$	$\begin{gathered} \text { TA/AG } \\ 0 \end{gathered}$	$\begin{gathered} C A / A G \\ 156 \end{gathered}$	$\begin{gathered} \mathrm{AA} / \mathrm{AG} \\ 1 \in 0 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{GA} / \mathrm{AG} \\ \hline 156 \\ \hline \end{array}$	TA/AG	$\begin{gathered} \hline \mathrm{CA} / \mathrm{AG} \\ 156 \\ \hline \end{gathered}$
AA/TC   140	$\begin{gathered} \text { GA/TC } \\ 140 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TA/TC } \\ 192 \\ \hline \end{array}$	$\begin{gathered} \hline \text { CA/TC } \\ 164 \\ \hline \end{gathered}$	AA/TC   140   189	$\begin{array}{\|c\|} \hline \mathrm{GA} / \mathrm{TC} \\ 140 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{TA} / \mathrm{TC} \\ 192 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{CA} / \mathrm{TC} \\ 16.4 \\ \hline \end{array}$
$\begin{array}{c\|} \hline A G / A E \\ 180 \\ \hline \end{array}$	$\begin{gathered} \mathrm{GC} / \mathrm{AG} \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} \text { TG/AG } \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} C G / A G \\ \hline 188: \\ \hline \end{gathered}$	$\begin{gathered} 4 G / A G \\ 18 Q \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { GG/AG } \\ 80 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{TG} / \mathrm{AG} \\ 0 \\ \hline \end{array}$	$\begin{array}{c\|} \hline C G / A G \\ 1 B Q \\ \hline \end{array}$
AG/TC 112	$\begin{gathered} \text { GG/TC } \\ 80 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TG/TO } \\ 128 \\ \hline \end{array}$	$\begin{array}{\|c} \text { CE/TC } \\ 188: \\ \hline \end{array}$	$\begin{gathered} \text { AG/TC } \\ 112 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{GG} / \mathrm{TC} \\ 80 \\ \hline \end{array}$	$\begin{gathered} \mathrm{TG},{ }^{\prime} \mathrm{TC} \\ 128 \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{TC} \\ 188 \\ \hline \end{gathered}$
AT/AE 0	$\begin{gathered} \text { GT/AG } \\ 120 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline T / 4 G \\ 144 \\ \hline \end{array}$	$\begin{gathered} C T / A G \\ 144 \\ \hline \end{gathered}$	$\begin{gathered} \hline A T / A G \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{GT} / \mathrm{AG} \\ 128 \\ \hline \end{array}$	$\begin{aligned} & \Pi / A G \\ & \hline 144 \\ & \hline \end{aligned}$	$\begin{gathered} \text { CT/AG } \\ 144 \\ \hline \end{gathered}$
$\begin{gathered} \mathrm{AT} / \mathrm{TC} \\ 144 \\ \hline \end{gathered}$	$\begin{gathered} \text { GT/TC } \\ 128 \\ \hline \end{gathered}$	$\begin{gathered} \text { TiTG } \\ 176 \end{gathered}$	$\begin{aligned} & \text { CT/TC } \\ & 1444 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{AT} / \mathrm{T} \mathrm{e} \\ 144 \\ \hline \end{gathered}$	$\begin{gathered} \text { GT/TC } \\ 128 \\ \hline \end{gathered}$	$\begin{gathered} \text { T/T } \\ 176 \\ \hline \end{gathered}$	$\begin{gathered} \text { CT/TO } \\ 144 \\ \hline \end{gathered}$
$\begin{array}{c\|} \hline \mathrm{AC} / \mathrm{AG} \\ 120 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{GC/AG} \\ 96 \end{array}$	$\begin{array}{\|c\|} \hline \text { TC/AG } \\ 112 \\ \hline \end{array}$	$\begin{gathered} C C / A G \\ 126: \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline A C / A G \\ 129 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{GC} / \mathrm{AG} \\ 96 \\ \hline \end{array}$	$\begin{gathered} \mathrm{TE} / \mathrm{AG} \\ 112 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline C C / A G \\ 126 \\ \hline \end{array}$
AC/TC 128	G6/TC 96	TC/TE	CC/TC	AC/TG   128	EC/TC	TC./TC 112	$\begin{gathered} 6 / \mathrm{TC} \\ 126 \\ \hline \end{gathered}$
$1234=95 \times 13$	- 1	100	$22=77 \times 13+1$	$924=71 \times 13$	+ 1	84	$4=65 \times$



## Others phenomena of only multiples of prime number 13



Various important observed phenomena	
The base of twenty amino acids is always the same:   consisted of 4 atoms of hydrogen, 2 atoms of carbon, 1 atom of nitrogen, and 2 atoms of oxygen.	The total protons number of every base (of amino acid) is $39 \Rightarrow 3 \text { times prime number } 13$
Systematically, it seems that the coded are identical if the final base of the codon is $\mathbf{A}$ either $\mathbf{G}$ or if this base is $\mathbf{T}$ or $\mathbf{C}$. This except for a named group the rebel group :   ATA72, ATG80, TGG108 and TGA (STOP)	The total protons number of the rebel group is $260 \Rightarrow 20$ times prime number 13
Three coded amino acids contain a sulphur atom, this sulphured coded group is: TGT64, TGC64 and ATG80 (cysteine, cysteine and methionine).	The total protons number of the sulphured group is   $208 \Rightarrow 16$ times prime number 13

## Symmetric and not symmetric amino acids

Here are connected by numeric and symmetric phenomena of multiples of the prime numbers 7,11 and 13 :

- the configuration of DNA bases,
- the number of protons contained in every respective amino acid
- and the molecular structure of the respective amino acid.

The 20 amino acids used in the genetic code can be distributed in two groups. These two groups separate the amino acids with a symmetric radical (including the electronic liaisons) from those with a asymmetric radical.

Examples of configurations	
SER 56	ASP 70
with a symmetric radical	
with protons number multiple of 8	with a protons number not multiple of 8


The 8 amino acids with a symmetric radical			
		$\text { ALA } 48$	$\begin{gathered} 9 \\ \text { GLY } 40 \end{gathered}$
CYS 64	  LEU 72	$\text { LYS } 80$	

Without the rebel group, the interaction between the group of amino acids with symmetric radical and this with not symmetric radical reveals numerical phenomena of symmetric multiples of the prime numbers 7, 11 and 13.

Distribution of protons num	umbers in the	enetic code t	able (without the rebel group)
AA with symmetric radical		AA with not symmetric radical	
AAA 80 LYS G   AAG 80 LYS G   AAT 70 ASN G   AAC $\mathbf{7 0}$ ASN G    $\mathbf{1 6 0 0}$      $\mathbf{1 4 0}$	GAA 78 GLU   GAG 78 GLU   GAT 70 ASP   GAC 70 ASP    $\mathbf{0}$     $\mathbf{2 9 6}$	TAA 0    TAG 0    TAT 96 TYR   TAC 96 TYR    $\mathbf{0}$     $\mathbf{1 9 2}$   	CAA 78 GLN   CAG 78 GLN   CAT 82 HIS   CAC 82 HIS    $\mathbf{0}$     $\mathbf{3 2 0}$
AGA 94 ARG G   AGG 94 ARG G   AGT 56 SER G   AGC 56 SER G    $\mathbf{1 1 2}$      $\mathbf{1 8 8}$	GGA 40 GLY   GGG 40 GLY   GGT 40 GLY   GGC 40 GLY    $\mathbf{1 6 0}$     $\mathbf{0}$	TGA 0    TGG 108 TRP   TGT 64 CYS   TGC 64 CYS    $\mathbf{1 2 8}$     $\mathbf{0 8}$   	CGA 94 ARG   CGG 94 ARG   CGT 94 ARG   CGC 94 ARG    $\mathbf{0}$     376
ATA 72 ILE G   ATG 80 MET G   ATT 72 ILE G   ATC 72 ILE G    $\mathbf{0}$      $\mathbf{1 4 4}$	GTA 64 VAL   GTG 64 VAL   GTT 64 VAL   GTC 64 VAL    $\mathbf{2 5 6}$     $\mathbf{0}$	TTA 72 LEU   TTG 72 LEU   TTT 88 PHE   TTC 88 PHE    $\mathbf{1 4 4}$     $\mathbf{1 7 6}$	CTA 72 LEU   CTG 72 LEU   CTT 72 LEU   CTC 72 LEU    $\mathbf{2 8 8}$     $\mathbf{0}$
ACA 64 THR G   ACG 64 THR G   ACT 64 THR G   ACC 64 THR G    $\mathbf{0}$      $\mathbf{2 5 6}$	GCA 48 ALA   GCG 48 ALA   GCT 48 ALA   GCC $\mathbf{4 8}$ ALA    $\mathbf{1 9 2}$     $\mathbf{0}$	TCA 56 SER   TCG 56 SER   TCT 56 SER   TCC 56 SER    $\mathbf{2 2 4}$     $\mathbf{0}$	CCA 63 PRO   CCG 63 PRO   CCT 63 PRO   CCC 63 PRO    $\mathbf{0}$     $\mathbf{2 5 2}$
$1664=13 \times 4 \times 32$			$340=13 \times 4 \times 45$

The protons numbers of these two groups are multiple of the prime number 13 : (recall: the total number of the 64 coded is $4004=308 \times 13$ )

Distribution of protons numbers in the genetic code table (without the rebel group)									
AA with symmetric radical					AA with not symmetric radical				
	A	T	G			A	T	G	
A	160				A	140	296	192	320
T	112	160	128		T	188			376
G		256	144	288	G	144		176	
C		192	224			256			252
$1664=13 \times 4 \times 32$						$40=$	13	$\times 4$	$\times 45$

Phenomena of symmetric multiples of the prime numbers 7, 11 and 13:

Numeric symmetrical phenomena of multiples of the prime number 7 (recall: AA with symmetric radical AA with not symmetric radical)															
160				140	296	192	320	160				140	296	192	320
112	160	128		188			376	112	160	128		188			376
	256	144	288	144		176			256	144	288	144		176	
	192	224		256			252		192	224		256			252
$1708=7 \times 4 \times 61$								$1876=7 \times 4 \times 67$							
160				140	296	192	320	160				140	296	192	320
112	160	128		188			376	112	160	128		188			376
	256	144	288	144		176			256	144	288	144		176	
	192	224		256			252		192	224		256			252
$2296=7 \times 4 \times 82$								$2128=7 \times 4 \times 76$							




## SECOND PART OF THE STUDY INCLUDING THE REBEL GROUP INTO ACCOUNTS

## Second part study technical introduction

In this second part : phenomena of multiples of prime number 13 only and including the rebel group into accounts.
This genetic code table version is the must representation for a good comprehension of presented phenomena in this study (first and second part). The following table describes the three bases of the codon, the respective coded amino acid and the number of protons contained in the coded amino acid. Here, values of the rebel group are taken into accounts. In fat the totals accumulated by protons appear.

AAA LYS	80	GAA GLU	78	TAA stop	0	CAA GLN	78	236	
AAG LYS	80	GAG GLU	78	TAG stop	0	CAG GLN	78	236	
AAT ASN	70	GAT ASP	70	TAT TYR	96	CAT HIS	82	318	
AAC ASN	70	GAC ASP	70	TAC TYR	96	CAC HIS	82	318	
	300		296		192		320		1108
AGA ARG	94	GGA GLY	40	TGA Stop	0	CGA ARG	94	228	
AGG ARG	94	GGG GLY	40	TGG TRP	108	CGG ARG	94	336	
AGT SER	56	GGT GLY	40	TGT CYS	64	CGT ARG	94	254	
AGC SER	56	GGC GLY	40	TGC CYS	64	CGC ARG	94	254	
	300		160		236		376		1072
ATA ILE	72	GTA VAL	64	TTA LEU	72	CTA LEU	72	280	
ATG MET	80	GTG VAL	64	TTG LEU	72	CTG LEU	72	288	
ATT ILE	72	GTT VAL	64	TTT PHE	88	CTT LEU	72	296	
ATC ILE	72	GTC VAL	64	TTC PHE	88	CTC LEU	72	296	
	296		256		320		288		1160
ACA THR	64	GCA ALA	48	TCA SER	56	CCA PRO	63	231	
ACG THR	64	GCG ALA	48	TCG SER	56	CCG PRO	63	231	
ACT THR	64	GCT ALA	48	TCT SER	56	CCT PRO	63	231	
ACC THR	64	GCC ALA	48	TCC SER	56	CCC PRO	63	231	
	256		192		224		252		924
	152		904		972		1236		4264


Distribution of the total number of protons (included the rebel group)				
Base rank	Base A	Base G	Base T	Base C
Rank 1	$\mathbf{1 1 5 2}$	$\mathbf{9 0 4}$	972	1236
Rank 2	$\mathbf{1 1 0 8}$	$\mathbf{1 0 7 2}$	$\mathbf{1 1 6 0}$	$\mathbf{9 2 4}$
Rank 3	$\mathbf{9 7 5}$	$\mathbf{1 0 9 1}$	$\mathbf{1 0 9 9}$	$\mathbf{1 0 9 9}$

## Symmetric values sums multiple of the prime number 13



The symmetric sums of these values are quite multiple of $\mathbf{1 3}$ in $\mathbf{2}$ near :


## Symmetrical associations of multiples of the prime number 13




## Distribution of the 64 coded in four groups

According to the configuration of the DNA bases of the 64 codons, the 64 coded are distributed into two groupings subdivided in four groups.

Depiction of groupings, groups and codons configuration		
grouping	group	Codons depiction
GROUPING 1	Group 1	Codons with $\mathbf{3}$ bases $\mathbf{A}$ or/and $\mathbf{T}$ only
	Group 4	Codons with $\mathbf{3}$ bases $\mathbf{G}$ or/and $\mathbf{C}$ only
GROUPING 2	Group 2	Codons with $\mathbf{2}$ bases $\mathbf{A}$ or/and $\mathbf{T}+\mathbf{1}$ base G or C
	Group 3	Codons with $\mathbf{2}$ bases $\mathbf{G}$ or/and $\mathbf{C}+\mathbf{1}$ base $\mathbf{A}$ or $\mathbf{T}$

First grouping
This grouping is constituted with 16 codons. In this grouping are represented $\mathbf{1 0}$ coded $\mathbf{+ 1}$ "coded" STOP.
In this grouping, the total's number of protons is multiple of the prime number 13 ( $\mathbf{8 0}$ time 13). (sub totals are multiple of prime number 11 and prime number 7 ).

3 bases A or/and T only			3 bases G or/and C only		
codon	coded	protons number	codon	coded	protons number
AAA	LYS	80	GGG	GLY	40
AAT	ASN	70	GGC	GLY	40
ATA	ILE	72	GCG	ALA	48
ATT	ILE	72	GCC	ALA	48
TT	PHE	88	CCC	PRO	63
TTA	LEU	72	CCG	PRO	63
TAT	TYR	96	CGC	ARG	94
TAA		0	CGG	ARG	94
base $\mathbf{A}$ or/and $\mathbf{T}=550$			base $\mathbf{G}$ or/and $\mathbf{C}=490$		
Grouping 1 total number $=1040=80 \times 13$					

## Second grouping

This grouping is constituted with 48 codons. In this grouping are represented $\mathbf{1 0}$ other coded $\mathbf{+ 1}$ "coded" STOP. In this grouping, the total's number of protons ( $\mathbf{1 0}$ other coded) is multiple of the prime number 13 ( 248 time 13).

Inside this grouping, the total quantity of protons of the coded codons of which have for first base $\mathbf{A}$ and $\mathbf{G}$ is multiple of 13 ( $\mathbf{1 2 2}$ times $\mathbf{1 3}$ ). The respective quantity for bases $\mathbf{T}$ and $\mathbf{C}$ is (logical consequence) multiple of 13 ( $\mathbf{1 2 6}$ times 13).

More in detail, the respective totals for bases $\mathbf{A}$ and $\mathbf{G}$ taken alone are also multiple of 13 ( $\mathbf{6 6}$ times $\mathbf{1 3}$ for $\mathbf{A}$ and $\mathbf{5 6}$ times $\mathbf{1 3}$ for $\mathbf{G}$ ) (these totals are respectively multiple of 11 and 7). Respective totals for $\mathbf{T}$ and $\mathbf{C}$ are multiple of 13 In 1 near. ( 55 and 71 times $\mathbf{1 3}$ in $\mathbf{1}$ near). (these totals are respectively multiple of 11 in 1 near and of 7 in 2 near).

$\mathbf{2}$ bases A or/and $\mathbf{T}+\mathbf{1}$ base $\mathbf{G}$ or/and $\mathbf{C}$			$\mathbf{2}$ bases $\mathbf{G}$ or/and $\mathbf{C + 1} \mathbf{1}$ base $\mathbf{A}$ or/and $\mathbf{T}$		
codon	coded	protons number	codon	coded	protons number
AAG	LYS	80	AGG	ARG	94
AAC	ASN	70	AGC	SER	56
AGA	ARG	94	ACC	THR	64
ACA	THR	64	ACG	THR	64
ATG	MET	80	GGA	GLY	40
ATC	ILE	72	GGT	GLY	40
AGT	SER	56	GAG	GLU	78
ACT	THR	64	GTG	VAL	64
GAA	GLU	78	GCA	ALA	48
GAT	ASP	70	GCT	ALA	48
GTT	VAL	64	GAC	ASP	70
GTA	VAL	64	GTC	VAL	64
first base $\mathrm{A}=66 \times 13$			first base G = 56 $\times 13$		
Total number (first base A or G) $=122 \times 13$					
codon	coded	protons number	codon	coded	protons number
TTG	LEU	72	TGG	TRP	108
TTC	PHE	88	TGC	CYS	64
TGT	CYS	64	TCC	SER	56
TCT	SER	56	TCG	SER	56
TAG		0	CCA	PRO	63
TAC	TYR	96	CCT	PR0	63
TGA	-	0	CAC	HIS	82
TCA	SER	56	CTC	LEU	72
CAA	GLN	78	CGA	ARG	94
CAT	HIS	82	CGT	ARG	94
CTT	LEU	72	CAG	GLN	78
CTA	LEU	72	CTG	LEU	72
first base $\mathbf{T}=(55 \times 13)+1$			first base $\mathbf{C}=(71 \times 13)-1$		
Total number (first base T or C) $=126 \times 13$					
Grouping 2 total number $=248 \times 13$					

Phenomena representation in the genetic code table (only with grouping 2 values):


## Symmetric and asymmetric distribution of the 20 amino acids

GROUPING 1 (group 1 and group 4)   3 bases $\mathbf{A}$ or/and $\mathbf{T}$ only   3 bases G or/and C only   10 coded present in group :					GROUPING 2 (group 2 and group 3)   $\mathbf{2}$ bases $\mathbf{A}$ or/and $\mathbf{T}+\mathbf{1}$ base $\mathbf{G}$ or $\mathbf{C}$   $\mathbf{2}$ bases $\mathbf{G}$ or/and $\mathbf{C}+\mathbf{1}$ base $\mathbf{A}$ or $\mathbf{T}$   10 others coded present in group :				
10 coded LYS ASN ILE PHE TYR LEU   GLY   ALA PRO ARG	group 1	group 2	group 3	group 4	group	group 2	group 3	${ }_{4}$ group	$\begin{gathered} 10 \\ \text { coded } \end{gathered}$
		0				40	40		ASP
	7	70				64	64		THR
	72	72				64	64		CYS
	88	88				56	56		SER
	96	96				78	78		GLU
	72	72	72			64	64		VAL
	$1028=$	$79 \times 1$	3) +1			78	78		GLN
			40	40		82	82		HIS
			48	48		80			MET
			63	63			108		TRP
			94	- 94		$636=$	664		
	$584=(45 \times 13)-1$				$(49 \times 13)-1(51 \times 13)+1$				
$\begin{aligned} 1028+584 & =124 \times 13 \\ 1028+636 & =128 \times 13 \end{aligned}$					$\begin{gathered} 636+664=100 \times 13 \\ 584+664=96 \times 13 \end{gathered}$				

The distribution of amino acids in the two groupings is, in same time, perfectly symmetric and perfectly asymmetric :

VERY IMPORTANT ESTABLISHED PHENOMENA	
4)	GR
10 amino acids are represented (50\%) (+ 1 STOP)	10 other represented amino acids (+ 1 STOP)
No amino acid in common in both groups (group 1 and group 4) and ...	All the amino acids in common in both groups (group 2 and group 3) except ...
... Two amino acids are represented twice in the other grouping :	Two amino acids are represented only in one group :
LEU in groups 3 and 2 ARG in groups 2 and 3	TRP only in group 3 MET only in group 2
All the amino acids are represented in both groupings: ...   ... group 1 present in group 2 (other grouping)   and   group 4 present in group 3 (other grouping)	No amino acid are represented in both groupings: ...   group 2 (except MET) in group 3 (same grouping)   and   group 3 (except TRP) in group 2 (same grouping)

## The 26 great codons

In conclusion of this study, a new presentation of the genetic code suggesting to classifying codons and coded in 26 entities: a great codon for a (great) coded. So for example the arginine is not coded 6 times but rather twice by:

A great codon consisted of $\mathbf{2}$ codons (AGA and AGG)
A great codon consisted of $\mathbf{4}$ codons (CGA, CGG, CGT and CGC)
This table of the genetic code is symmetric when one considers the number of coded contained in each of 16 table box. This table contains $\mathbf{2 6}$ great codons among which 13 in both first columns (first DNA base A and G) and 13 in both last ones (first DNA base T and C):

NEW SYMMETRIC TABLE OF THE GENETIC CODE			
13 GREAT CODONS IN   4 boxes with 1 great codon 3 boxes with 2 great codons 1 box with 3 great codons		13 GREAT CODONS IN   4 boxes with 1 great codon 3 boxes with 2 great codons 1 box with 3 great codons	
A   AA G LYS    T    AA C ASN   2 great codons	  GA G GLU    T    GA C ASP   2 great codons	A    TA G STOP   TA C TYR   2 great codons	A    CA G GLN   CA T    2 HIS     2 great codons
   A    AG G ARG    T    AG C SER   2 great codons	GGA                   great codonC	TG A STOP   TG G TRP    T    TG C CYS   3 great codons	  CG A      G     ARG     T     C great codon
AT A   AT ILE   G MET   AT C   C ILE   3 great codons		A    TT G LEU    T    T C PHE   2 great codons	
		  TC A                     Ggrest codon   T	  CC A                     ggrest codon   C

The columns of DNA bases $\mathbf{A}$ and $\mathbf{T}$ and DNA bases $\mathbf{G}$ and $\mathbf{C}$ also contain the same number of great codons :
Columns A and T: 1 box of 1,2 boxes of 2 and 1 box of 3 .
Columns $G$ and C : 3 boxes of 1 , and 1 box of 2 .

## CONCLUSION

It clearly appears in this study that the universal genetic code answers numerical constraints. These numerical constraints connect the configuration of codons with the atomic structure of the respectively coded amino acids.

This study reveals very many phenomena of multiples of prime numbers connecting:

## $\Rightarrow$ the codons configuration (triplets of DNA bases)

to
$\Rightarrow$ the number of protons (or atomic number) constituting the coded amino acids.
This study also reveals very many facts of symmetry in the distribution of these phenomena. These phenomena observed relate to the whole of the genetic code and are often complementary systematically and very symmetrically.

These phenomena imply the prime numbers:

## $\Rightarrow 7,11$ and 13.

A very important observation revealed in this study, highlights the association of:

## $\Rightarrow$ phenomena of concentration of multiples of the prime number 7 towards coding of the amino acid coded proline <br> to <br> $\Rightarrow$ the a number of times that an amino acid is coded.

This study largely draws the attention to this particular amino acid of which the general structure is the only one to be distinguished from the other amino acids. All the other amino acids (included in the universal genetic code) have a radical including an odd number of protons. The proline is the only amino acid to have an even number of it.

This study also shows the following rule:
Except a named group the rebel group (ATA, ATG, TGG and TGA) with a total protons number multiple of the prime number 13, the codons code for the same coded
$\Rightarrow$ if and only if their last base is $A$ or $G$
$\Rightarrow$ if and only if their last base is T or C
This study also proposes a reorganization of the table of the universal genetic code while gathering code them and coded in twenty-six entities. These entities (distributed symmetrically in the table of the genetic code) gather a great codon and a great coded. Thus, this new table of the genetic code includes 26 great codons connected with 26 great coded of which:
$\Rightarrow 8$ great codons-coded of 4 codons-coded
$\Rightarrow 14$ great codons-coded of 2 codons-coded
$\Rightarrow 4$ great codons-coded of 1 codon-coded


[^0]:    * multiple of 7 in 1 , in 2 and in 3 near

