The numeric connections of the genetic code

Jean-Yves BOULAY

Independent researcher - 25 rue Pierre Loti 97430 LE TAMPON jean-yvesboulay@orange.fr

INTRODUCTION

The number of protons contained in every amino acid and the configuration of DNA bases of their respective genetic coding are connected by numeric phenomena. These phenomena consist into effects of multiples of prime numbers including the totality of the relations enters the configuration of the genetic code (64 codons) and the values of the numbers of protons (or atomic numbers) in the 64 coded amino acids (61 amino acids and 3 stop). These phenomena describe important effects of a symmetry as for their distributions in the table of the genetic code. These phenomena of symmetric multiples imply prime numbers: 7 - 11 - 13

Study technical depiction

The presented phenomena concern the **total protons number** included in the radical + in the base of the 64 coded amino acids (61 amino acids and 3 stop). Example for the serine: 17 protons (radical) + 39 protons (common base) = 56 protons.

Specificity of the proline:

The amino acid proline, has a very particular structure. It is the only among all whose radical has a even number of protons. All other amino acids have an odd radical and organized on the common base (39 protons: also odd) form all a complete molecule possessing a even number of protons. The proline should lose a proton (a hydrogen) during its association on the base to form too a molecule in even number of protons. It is also the only amino acid with two electronic liaisons between the radical and the base.

So, in this study, it is accounted for the proline 24 protons in the radical zone + 39 protons in the base zone, so a total number of protons equal to 63. It is the total number of protons of the proline's radical + the one included in the common base of alls the amino acids.

Without this special account, the totality of the very numerous phenomena described in this study are completely destroyed.

The proline is also, and not by chance, in the centre of numerous presented phenomena.

Study technical depiction

In this study, the relations " codon-coded " are described mainly so:

Three letters	CCG	94	A number
The codor	1	Tota	l of protons
being described by three	e DNA bases	radical + in the	in the coded amino acid base of amino acid (not ed chemically)

Example of a codon and a coded (here the arginine) constituted of:

Atom	atoms number	protons number	Total protons number
Hydrogen	14	14	94
Carbon	6	36	
Nitrogen	4	28	in the coded amino acid
Oxygen	2	16	radical + in amino acid base
Sulphur	ō	0	not gathered chemically

Systematically, it seems that the coded are identical if the final base of the codon is **A either G** or if this base is **T or C**. This except for a named group *the rebel group* : ATA72, ATG80, TGG108 and TGA (STOP). The **total protons number** of this group is 260: **20 times prime number 13**. The rebel group set apart, codons code for the same coded **if and only if** their last base is or **A or G** or **T or C**.

In this group: was coded ATG80, **the methionine**, the fundamental sulphured amino acid (**ATG** is the **initiator codon**). Also in this group: was coded TGG108, **the tryptophan** (the more large protons number coded). Also in this group: was coded TGA (STOP).

VERY	IMPORTANT ESTABLISHED PHENOMENA
The rebel gro	up set apart, the codons code for the same coded
→	if and only if their last base is A or G
▶	if and only if their last base is T or C

FIRST PART OF THE STUDY NO INCLUDING THE REBEL GROUP INTO ACCOUNTS

First part study technical introduction

The following table describes the whole genetic code: the three bases of the codon, the coded amino acid and the number of protons contained in the coded amino acid. In fat the totals accumulated by protons appear. The values of **the rebel group** are not taken into accounts.

			Table	of the ge	netic co	de		
AAA LYS	80 G	AA GLU	78	TAA STOP	0	CAA GLN	78	236
AAG LYS	80 G	AG <mark>GLU</mark>	78	TAG STOP	0	CAG GLN	78	236
AAT ASN	70 G	AT ASP	70	TAT TYR	96	CAT HIS	82	318
AAC ASN	70 G	AC ASP	70	TAC TYR	96	CAC HIS	82	318
	300		296		192		320	1108
AGA ARG	94 G	GA <mark>GLY</mark>	40	ТСА этор	0	CGA <mark>ARG</mark>	94	228
AGG ARG	94 G	gg <mark>gly</mark>	40	TGG TRP	108	CGG ARG	94	228
AGT SER	56 G	GT GLY	40	TGT CYS	64	CGT ARG	94	254
AGC SER	56 G	GC <mark>GLY</mark>	40	TGC CYS	64	CGC ARG	94	254
	300		160		128		376	964
ATA ILE	72 G	TA VAL	64	TTA LEU	72	CTA LEU	72	208
ATG MET	80 G	TG VAL	64	TTG LEU	72	CTG LEU	72	208
ATT ILE	72 G	TT VAL	64	TTT PHE	88	CTT LEU	72	296
ATC ILE	72 G	TC VAL	64	TTC PHE	88	CTC LEU	72	296
	144		256		320		288	1008
ACA THR	64 G	CA ALA	48	TCA SER	56	CCA PRO	63	231
ACG THR	64 G	CG ALA	48	TCG <mark>SER</mark>	56	CCG PRO	63	231
ACT THR	64 G	CT ALA	48	TCT SER	56	CCT PRO	63	231
ACC THR	64 G	CC ALA	48	TCC SER	56	CCC PRO	63	231
	256		192		224		252	924
	1000		904		864		1236	4004

		of the total number	•	
	(exc	luded the rebel g	iroup)	
Base rank	Base A	Base G	Base T	Base C
Rank 1	1000	904	864	1236
Rank 2	1108	964	1008	924
Rank 3	903	903	1099	1099

In most of the next descriptions, this table		А	G	Т	С
is represented compressed. The ranks of codons bases are always	A	300	296	192	320
classified in the same order: A G T C	G	300	160	128	376
A box is the total sum (protons number) of 4 coded with the identical 2 first DNA	т	144	256	320	288
bases.	с	256	192	224	252

Phenomena of multiples (7, 11 and 13) according to the rank of the base

The total number of protons of all the coded and **the excluded rebel group** is:

$4004 = 2^2 \times 7 \times 11 \times 13$

Of very numerous numeric phenomena of symmetric multiples of these last three prime numbers connect the structure of amino acids to the general configuration of the genetic code. The phenomena implying the prime number **7** are here most significant.

These values are not distributed at random but grouped together : the exact multiple values of 7 (in 0 near) concern the third whole rank (base A, G, T and C) and half of the second rank (base T and C).

Base rank	Base A	Base G	Base T	Base C
Rank 1	1000 (- 1)*	904 (+ 1)*	864 (+ 3)*	1236 (- 3)*
Rank 2	1108 (+ 2)*	964 (- 2)*	1008	924
Rank 3	903	903	1099	1099

* multiple of 7 in 1 , in 2 and in 3 near

Condensed phenomena (summary) of these multiples of the prime number 7 :

Phenomena of concentration of prime number 7 multiples to the proline genetic coding

The total of the **16 values** (condensed by the main table of the genetic code) is multiple of the **prime number 7** (**4004 = 7 x 572**) and:

This total is s	ubdivio	ded in	2 grou	ps also	multiple of 7
8 values group multiple of 7: 300 + 296 + 192 + 320 +	AA 300	GA 296	TA 192	CA 320	
300 + 160 + 128 + 376 = 2072 = 7 x 296	AG 300	GG 160	TG 128	CG 376	
	AT 144	GT 256	TT 320	CT 288	8 values group multiple of 7:
	AC 256	GC 192	ТС 224	CC 252	144 + 256 + 320 + 288 + 256 + 192 + 224 + 252 = 1932 = 7 x 256

	and new	v division:	
4 values group multiple of 7: 144 + 256 + 320 + 288 =	AT GT 144 256	TT CT 320 288	4 values group multiple
1008 = 7 x 144	AC GC 256 192	TC CC 224 252	of 7: 256 + 192 + 224 + 252 = 924 = 7 x 132

	an	d new	divisi	on:	
2 values group multiple of 7: 256 + 192 =		00	тс	CC	2 values group multiple of 7: 224 + 252 =
250 1 152 -	AC 256	GC 192		252	
448 = 7 x 64					476 = 7 x 68

		and new division:		
1 value group multiple of 7:	224 = 7 x 32	TC CC 224 252	1 value group multiple of 7:	252 = 7 x 36

It appears so in this configuration of 7 multiples, a regular phenomenon of more and more strong concentration to the coding of **the proline**:

The probability of existence of this configuration in a square with 16 boxes (16 values) is 1/16307 $(1/7^5)$! This phenomenon concentrates to the coding of **the proline**, the amino acid the peculiarities of which described in introduction can not be without report with these observations.

Curiously (but certainly not by chance), the box value coding for **the proline** (**252**) is the nearest value (among all 16 values) to the 16 values average : the 16 values average =

4004/16 = 250.25

The orderly last one of this table is the only one where, every time, four codons code for the same amino acid

						TCA						
ACG	THR	64	GCG	ALA	48	тсө	SER	56	II	CCG	PRO	63
ACT	THR	64	GCT	ALA	48	тст	SER	56	II	сст	PRO	63
ACC	THR	64	GCC	ALA	48	тсс	SER	56		ccc	PRO	63

Both basic values (**64 and 48**) left boxes (AC-and GC-) are multiple of **7** in one near. Both mutual values with right boxes (**56** and **63**) both are multiple exact of **7**. The more and more strong concentration of multiples of 7 towards these last two boxes of the table of the genetic code can so have a report with a stability of the coding of amino acids aiming towards four codons for one amino acid. This phenomenon concentrated on **the proline** to a direct report with another associated phenomenon:

VERY IMPORTANT ESTABLISHED PHENOMENA

The phenomenon of concentration of multiples of 7 to the proline coding has a link with the **number of coded** contained in every box (**first two identical bases**). At the top of the table, 8 boxes are necessary to form a multiple of 7 and 25 % of these boxes (2 boxes) code only for the coded only one. Then, on 4 boxes forming a multiple of 7, 2 boxes (50 %) code for the coded only one. Both following boxes forming a multiple of 7 code in 100 % for the coded only one and it's the same for the 2 remaining boxes where concentrates this double phenomenon:

multiple of 7 and a single coded amino acid.

Associations "multiples of 7 and number of coded by box"

The phenomenon of concentration of multiple of 7 to the proline coding has a link with the **number** of coded contained in every box (first two identical bases):(The rebel group is not booked.)

Phenomena of diagonals associating to the proline genetic coding

The total of every diagonal of the table of the genetic code since the first box (first and second base A) up to the last one (first and second base C) is always multiple of **7** in one near. Safe for this last box: **that coding for the proline**.

These diagonals join among them and form groups of 1, 3, 5 and 7 boxes the totals of which are multiple of **7**. The box of **the proline**, being already multiple of **7**, remains alone and can not moreover join with the other diagonals (odd number of diagonals). By separating the boxes values among the coded codons of which have finales **A and G** and those codons of which have finales **T and C**, the phenomena of multiples of **7** are protected. This, although the values (and the coded) are different in both sub-tables.

Phenomena of multiples of the prime number 11 associated to the number of coded by box

Here, phenomena implicate the prime number 11 are most significant.

The sums of 8 values of 4 symmetric groups are **multiple of 11**.

The sums of 8 values of 2 symmetric groups are **multiple of 11 and multiple of 7.**

The sums of 8 values of the 2 symmetric other groups are **multiple of 11 and multiple of 13**.

Inside these symmetric groups of 8 values and multiple of **11**, others subgroups of 4 perfectly symmetric and additional values are also multiple of **11**.

It is not possible that these phenomena are to be by chance. These phenomena are connected to the number of coded by box (codons with the two first DNA bases identical).

Associations of these phenomena of symmetric multiples of the prime number 11 with the number of coded by box : Curious phenomenon, in each subgroup of 4 values (4 boxes) systematically, 2 boxes represent one only coded.

Superposition of the	e two configurations
The configuration with boxes representing one only coded is not symmetrical but the superposition with the symmetrical sub groups of 11 multiples form regularly associations of 4 boxes with 2 boxes	300 296 192 320 300 160 128 376 144 256 320 288
representing + of one coded and 2 boxes representing one only coded!	In each sub group: 2 boxes of one only coded and 2 boxes of + one coded

By permuting two by two, into each sub group, 2 boxes of one only coded and 2 boxes of + one coded, appears new configurations also multiple of 11.

Others phenomena of multiples of prime numbers 7, 11 and 13

In the following configuration, associations of multiples of prime numbers **13**, **11** and **7** are progressive from 7 to 13. Here, the boxes values stand apart between codons by final AG and codons by final TC.

Symmetric and progressive	associations of multiples of pr	ime numbers 13 , 11 and 7
AA/TC 140 AG/TC 112 AT/TC 144 AC/TC 128 524	AA/AG 160 AG/AG 188 AT/AG 152 AC/AG 128 476	1000 = (77 x 13) - 1
TA/AG 0 TG/AG 108 TT/AG 144 TC/AG 112 256	GA/AG 156 GG/AG 80 GT/AG 128 GC/AG 96 460	716 = (55 x 13) + 1
780	936	1716
= 60 x 13	= 72 x 13	=132 x 13 or 156 x 11
(71x11)-1 or (111x7)+3	(85x11)+1 or (134x7)-2	or (245 x 7) + 1
TA/TC 192 TG/TC 128 TT/TC 176 TC/TC 112	GA/TC 140 GG/TC 80 GT/TC 128 GC/TC 96 444	1052 = (81 x 13) – 1
CA/AG 156 CG/AG 188 CT/AG 144 CC/AG 126 614	CA/TC 164 CG/TC 188 CT/TC 144 CC/TC 126 622	1236 = (95 x 13) + 1
1222	1066	2288
= 94 x 13	= 82 x 13	= 176 x 13 or 208 x 11
(111x11)+1 or (175x7)-3	(97x 11)-1 or (152x7)+2	or (327 x 7) - 1
2002	2002	4004
= 2 x 13 x 11 x 7	= 2 x 13 x 11 x 7	= 4 x 13 x 11 x 7

In this configuration, the total sum **4004** is multiple of prime numbers **13**, **11** and **7**. The subtotal sums **1716** and **2288** are multiple of **13** and **11** and multiple of **7 in 1 near**.

The subtotal sums **936** and **1066** are multiple of **13**, multiple of **11** in **1** near and multiple of **7** in **2** near.

The subtotal sums **780** and **1222** are multiple of **13**, multiple of **11** in **1** near and multiple of **7** in **3** near.

The two sums **2002** (multiple of 13, 11 and 7) are identical but represent not identical coded! Phenomena presentation in the genetic code table:

	Configurations mult	iple of 13, 11 and 7	
2002 = 2 x	7 x 11 x 13	2002 = 2 x	7 x 11 x 13
	Identical sums but	not identical coded !	
188 80 AG/10 GG/TC 112 80 AT/AG GT/AG 0 128 AT/10 GT/TC 144 128	0 156 10/10 CA/TC 162 164 16/AG UE/ASC 0 108 16/TC CG/TC 188 11/10 CT/TC 120 144 11/10 CT/TC 120 144	AA, AB OA, AG 150 155 AA/TC GA/TC 140 140 140 140 140 140 140 140 157,40 65,740 168 60 AG/TC 66,710 112 80 AT/AG 61,748 0 123 AT/TC 61,710 144 128 AG/AG 61,748 158 50 AC/AG 61,748 123 50 AC/TC 62,710 128 30	TA/AG CA/AG 0 156 TA/TC CA/TC 192 164 TG/AG CG/AG 0 188 TG/TC CG/TC 128 188 TT/AG CT/AG 144 144 TT/TC CT/TC 176 144 TC/AG CC/AG 112 126 TC/TC CC/TL 112 126
780	1222	936	1066
= 60 x 13	= 94 x 13	= 72 x 13	= 82 x 13
(71x11)-1 (111x7)+3	(111x11)+1 (175x7)-3	(85x11)+1 (134x7)-2	(97x11)-1 (152x7)+2

1716 =	<u>.3 and 11 (and 7 in 1 near)</u> 2288 =						
132 x 13 or 156 x 11 or (245 x 7) + 1	= 176 x 13 or 208 x 11 or (327 x 7) - 1						
AA/AG GA/AG TA/AG CA/AG 100 155 0 156 AA/TC GA/TC TA/AG CA/AG 140 190 192 164 AC/TC GA/TC TG/AC CG/AG 140 192 164 AC/TC GS/AC TG/AC CG/AG 130 0 0 188 AG/TC GG/TC TG/TC CG/TC 112 80 128 188 AG/TC GJ/AL TT/AG CT/AG 0 123 144 144 AT/TC GJ/AC TT/TC CT/CC 144 128 176 144 AL/AS GS/AS TL/AG CC/AG 123 S TL/AG CC/AG 124 SC/AS TL/AG CC/AG 125 S TL/AG CC/AG	AA/AG GA/AG TA/AG CA/AG 160 156 0 155 AA/TC GA/TC TA/AG CA/TC 140 140 102 163 AG/AG GG/AG TG/AG CZ/AG 188 80 0 163 AG/TC GG/AG TG/AG CZ/AG 188 80 0 163 AG/TC GG/IC TI/ID CG/IC 112 80 128 188 AT/AG GT/AG TT/AG CI/OS 0 128 144 183 AT/TC GT/AG TC/AG 144 AC/AG GC/AG TC/AG 144 128 96 112 120 AC/TC GC/AG TC/AG CC/AG 128 96 112 120						

These previous configurations of multiples of prime number 13 implicate numerous others configurations of symmetric multiples with symmetric sub configurations systematically multiple of 13 in 1 near !

These phenomena presented here shows all the philosophy emanating of this study on the genetic code: very large and subtle sophistication of fitting of numerical phenomena connecting codons with the coded.

In order to not complicate the presentation of the phenomena too much, only some configurations are presented here.

Some configurations of symmetric 13 multiples with symmetric sub configurations systematically multiple of 13 in 1 near:

17	16 =	132 x	13			22	88 =	176 x	13
AA/AG	GA/AG	TA/AG	CA/AG			AA/AG	GA/AG	TA/AG	
160 AA/TC	156 GA/TC	TA/TC	156 CA/TC			<u>160</u> AA/TC	156		156 CA/TC
140	140	192	164			140	140	192	164
AC/AC	GG/AG	TG/AG	CG/AG			AG/AG	GG/AG	TG/AG	CG/AG
188 AC/TC	80 GG/TC	TG/TC	188 CG/TC			188 AG/TC	80		188 CG/TC
112	80	128	188			112	80	128	188
AT/AC	GT/AG	TT/AG	CT/AG			AT/AG	GT/AG	TT/AG	CT/AG
0	128	144	144			0	128	144	144
AT/TC 144	GT/TC 128	176 TT/TC	CT/TC 144			AT/TC	GT/TC 128	175	CT/TC
AC/AG	GC/AG	TC/AG	CC/AG			144 AC/AG	GC/AG	TC/AG	<u>144</u> CC/AG
128	96	112	126			128	96	112	126
AC/TC	GC/TC	тс/тс	CC/TC			AC/TC	CC/TC	TC/TC	CC/TC
128	96	112	126			128	96	112	126
716 = 55 x 13	+ 1	100	0 = 77	x 13 - 1	1236 =	95 x 13	+1	105	5 2 = 81 x

configurations different but even total sums:

1716 =	132 x 13	22	88 = 3	176 x	13
AA/AG 6A/A0	TA/AG CA/AG	AA/AG	GA/AG	TA/AG	CA/AG
160 155		160	156	O	155
AA/TC GA/TO		AA/TC	GA/TC	TA/TC	\$8/TC
140 140		140	1.40	192	154
AG/AG GG/00	0 CG/AG	AG/AG	GG/AG	TG/AG	CG/AG
188 50		188	80	D	188
AG/TC 66/TC	128 188	AG/10	GG/TC	TG/TC	06/10
112 80		112	80	128	136
AT/AB GT/A(0 128	144 144	AT/AG	GT/AG 128	TT/AG 144	CT/AG 144
AT/TC GT/TC	176 144	AT/TG	GT/16	TT/TC	CT/TC
144 128		144	128	175	144
AC/AG GC/AC		AC/AG	GC/AG	TC/AG	CC/ A G
120 96 AC/TC GC/TC	112 126	AC/AG 128 AC/TC	96 96 60/TC	112 TC/TC	126 CC/TC
128 96	112 126	128	96	112	126
636 = 49 x 13 - 1	1080 = 83 x 13 + 1	1080 = 83 x 13	+1	120	8 = 93 x 13 - 1

Others subtle configurations:

$2236 = 172 \times 13$	1768 = 136 x 13
AA/AG GA/AG TA/AG CA/AG	AA/AG GA/AG TA/AG CA/AG
160 156 O 156	160 156 0 156
AA/TE GA/TC TA/TC CA/TC	AA/TO GA/TO TA/TO CA/TO
140 140 192 164	140 140 192 164
AG/AG GG/AG TG/AG CG/AG	AG/AG GG/AG TG/AG CG/AG
168 80 0 188	188 80 0 188
GG/TC GG/TC TG/TC CG/TC	AG/TC GG/TC TG/TC CG/TC
512 80 128 188	112 80 128 188
AT/AG GT/AG TT/AG CT/AG	AT/AG GT/AG TT/AG CT/AG
0 128 144 144	0 128 144 144
AT/TE GT/TC TT/TC CT/TE	AT/TC GT/TC TT/TC CT/TC
144 128 176 144	144 128 176 144
AC/AG GC/AG TC/AG CC/AG	AC/AG GC/AG TC/AG CC/AG
128 96 112 126	128 96 112 126
AL/TE GC/TC TC/TC CL/TE	AC/TC GC/TC TC/TC CC/TC
128 96 112 126	128 95 132 126
1000 = 77 x 13 - 1 1236 = 95 x 13 + 1	$716 = 55 \times 13 + 1$ $1052 = 81 \times 13 - 1$

2236 =	172 x 13	17	68 = 136	x 13
	TA/AG <mark>CA/RG</mark>	AA/AG	GA/AG TA/A	G CA/AG
150 156 AA/TC GA/TC	O 156 TA/TC CA/TC	160 AA/TC	GA/TC TA/T	156 CA/TC
140 1 40	192 164	140	140 192	164
AG/AG GG/AG	TG/AG CG/AC O 188	AG/AG 188	GG/AG TG/A 80 0	CG/AG 188
AG/TC GG/TC		AG/TC	GG/TC TC/T	CG/TC
112 80 AT/AG GT/AG	128 188 TT/AG CT/AG	112 AT/AG	80 123 GE/AG TE/A	188 CT/AG
0 128	144 144	0	128 144	144
AT/10 GT/TC 144 128	TT/TC 01/10 176 144	AT/TC 144	GT/TC TT/T 128 176	CT/TC 144
AC/AG 128 96	TC/AG CC/AG 112 126	AC/AG 128	GC/AG TC/A/ 96 112	
		AC/TC	GC/TC TC/T	-
128 96	112 126	128	96 112	126
1234 = 95 x 13 - 1	1002 = 77 x 13 + 1	924 = 71 x 13	+1 8	44 = 65 x 13 - 1

Others phenomena of only multiples of prime number 13

Various important ob	served nhenomena
The base of twenty amino acids is always the same : consisted of 4 atoms of hydrogen, 2 atoms of carbon, 1 atom of nitrogen, and 2 atoms of oxygen.	The total protons number of every base (of amino acid) is 39 ➡ 3 times prime number 13
Systematically, it seems that the coded are identical if the final base of the codon is A either G or if this base is T or C . This except for a named group <i>the rebel group</i> : ATA72, ATG80, TGG108 and TGA (STOP)	The total protons number of the rebel group is 260 ➡ 20 times prime number 13
Three coded amino acids contain a sulphur atom , this sulphured coded group is : TGT64, TGC64 and ATG80 (cysteine, cysteine and methionine).	The total protons number of the sulphured group is 208 ➡ 16 times prime number 13

Symmetric and not symmetric amino acids

Here are connected by numeric and symmetric phenomena of multiples of the prime numbers 7, 11 and 13:

- the configuration of DNA bases,

- the number of protons contained in every respective amino acid

- and the molecular structure of the respective amino acid.

The 20 amino acids used in the genetic code can be distributed in two groups. These two groups separate the amino acids with a **symmetric radical** (including the electronic liaisons) from those with a **asymmetric radical**.

	The 8 amino acids with a symmetric radical						
	Å	۰	ę				
VAL 64	SER 56	ALA 48	GLY 40				
CYS 64	LEU 72	LYS 80	MET 80				

Without the rebel group, the interaction between the group of amino acids with symmetric radical and this with not symmetric radical reveals numerical phenomena of symmetric multiples of the prime numbers **7**, **11** and **13**.

Distribution of p	oroton	s nu	mbe	rs in	the	gene	tic co	ode ta	able	(witho	out the rebel	group)	
AA with sym	AA with symmetric radical								AA with not symmetric radical				
AAA	80 L	YS (GAA	78	GLU	TAA	0		CAA	78	GLN		
AAG	80 L	YS (GAG	78	GLU	TAG	0		CAG	78	GLN		
AAT			GAT	70	ASP	TAT	96	TYR	CAT	82	HIS		
AAC		SN (GAC	70	ASP	TAC	96	TYR	CAC	82	HIS		
	160			0			0			0			
	140			296	<u></u>		192			320			
AGA			GGA	40	GLY	TGA	0	TDD	CGA	94	ARG		
AGG			GGG	40	GLY	TGG	108		CGG	94	ARG		
AGT			GGT GGC	40 40	GLY GLY	TGT TGC	64 64	CYS	CGT CGC	94 94	ARG ARG		
AGC	112	DER C		40 160	GLT		128	CIS	CGC	94	AKG		
	188			0			0			376			
ATA			GTA	64	VAL	TTA	72	LEU	СТА	72	LEU		
ATG	80 M		GTG	64	VAL	TTG	72	LEU	CTG	72	LEU		
ATT	72 I		GTT	64	VAL	TTT	88	PHE	CTT	72	LEU		
ATC	72 I		GTC _	64	VAL	TTC	88	PHE	СТС	72	LEU		
	0			256			144			288			
	144			0			176			0			
ACA			GCA	48	ALA	тса	56	SER	ССА	63	PRO		
ACG			GCG	48		TCG	56			63	PRO		
ACT			GCT	48	ALA	ТСТ	56	SER		63	PRO		
ACC		HR C		48	ALA	тсс	56	SER	ссс	63	PRO		
	0			192			224			0			
	256			0			0			252			
1664 = 1	2 × 4	v 22	2					2	240	- 12	x 4 x 45		
1004 = 1	3 X 4	x 32	4					2	340	- 13	x 4 x 45		

The protons numbers of these two groups are multiple of the prime number 13 : (recall: the total number of the 64 coded is $4004 = 308 \times 13$)

SECOND PART OF THE STUDY INCLUDING THE REBEL GROUP INTO ACCOUNTS

Second part study technical introduction

In this second part : phenomena of multiples of prime number 13 only and including the rebel group into accounts.

This genetic code table version is the must representation for a good comprehension of presented phenomena in this study (first and second part). The following table describes the three bases of the codon, the respective coded amino acid and the number of protons contained in the coded amino acid. Here, values of **the rebel group** are taken into accounts. In fat the totals accumulated by protons appear.

AAT ASN AAC ASN		GAT ASP	70 70	TAT TYR		CAT HIS CAC HIS	82 82	318 318
	300	0.110	296		192	0.10 110	320	1108
AGA <mark>ARG</mark>	94	GGA <mark>GLY</mark>	40	TGA STOP	0	CGA ARG	94	228
AGG <mark>ARG</mark>	94	GGG GLY	40	TGG TRP	108	CGG ARG	94	336
AGT <mark>SER</mark>	56	GGT GLY	40	TGT CYS	64	CGT ARG	94	254
AGC <mark>SER</mark>	56	GGC GLY	40	TGC CYS	64	CGC ARG	94	254
	300		160		236		376	1072
ATA ILE	72	GTA VAL	64	TTA LEU	72	CTA LEU	72	280
ATG MET	80	GTG VAL	64	TTG LEU	72	CTG LEU	72	288
ATT ILE	72	GTT VAL	64	TTT PHE	88	CTT LEU	72	296
ATC ILE	72	GTC VAL	64	TTC PHE	88	CTC LEU	72	296
	296		256		320		288	1160
ACA THR	64	GCA ALA	48	TCA SER	56	CCA PRO	63	231
ACG THR	64	GCG ALA	48	TCG <mark>SER</mark>	56	CCG PRO	63	231
ACT THR	64	GCT ALA	48	TCT SER	56	CCT PRO	63	231
ACC THR	64	GCC ALA	48	TCC SER	56	CCC PRO	63	231
HOC IIIK					224		252	924

Distribution of the total number of protons (included the rebel group)					
Base rank	Base A	Base G	Base T	Base C	
Rank 1	1152	904	972	1236	
Rank 2	1108	1072	1160	924	
Rank 3	975	1091	1099	1099	

Symmetric values sums multiple of the prime number 13

The symmetric sums of these values are quite multiple of **13 in 2 near** :

Symmetrical associations of multiples of the prime number 13

Sur	Summary symmetrical associations of multiples of the prime number 13				
These 6 squares are associated with					
These 6 columns (or 2 sub columns)					
		To form 6 symmetrical associations of multiples of the prime number 13			

Distribution of the 64 coded in four groups

According to the configuration of the DNA bases of the 64 codons, the 64 coded are distributed into two groupings subdivided in four groups.

Depiction of groupings, groups and codons configuration				
grouping	group	Codons depiction		
GROUPING 1	Group 1	Codons with 3 bases A or/and T only		
	Group 4	Codons with 3 bases G or/and C only		
GROUPING 2	Group 2	Codons with 2 bases A or/and T + 1 base G or C		
GROUPING 2	Group 3	Codons with 2 bases G or/and C + 1 base A or T		

First grouping

This grouping is constituted with 16 codons. In this grouping are represented **10 coded + 1** "coded" STOP.

In this grouping, the total's number of protons is multiple of the prime number 13 (**80 time 13**). (sub totals are multiple of prime number 11 and prime number 7).

3 bases A or/and T only		3 bas	3 bases G or/and C only		
codon	coded	protons number	codon	coded	protons number
AAA	LYS	80	GGG	GLY	40
AAT	ASN	70	GGC	GLY	40
ATA	ILE	72	GCG	ALA	48
ATT	ILE	72	GCC	ALA	48
ΠΤ	PHE	88	CCC	PRO	63
TTA	LEU	72	CCG	PRO	63
TAT	TYR	96	CGC	ARG	94
TAA	-	0	CGG	ARG	94
base A or/and T = 550			base	G or/and C	= 490
	Grou	oing 1 total nu	mber =1040 = 8	0 x 13	

Second grouping

This grouping is constituted with 48 codons. In this grouping are represented **10 other coded + 1** "coded" STOP. In this grouping, the total's number of protons (**10 other coded**) is multiple of the prime number 13 (**248 time 13**).

Inside this grouping, the total quantity of protons of the coded codons of which have for first base **A** and **G** is multiple of 13 (**122 times 13**). The respective quantity for bases **T** and **C** is (logical consequence) multiple of 13 (**126 times 13**).

More in detail, the respective totals for bases **A** and **G** taken alone are also multiple of 13 (**66 times 13** for **A** and **56 times 13** for **G**) (these totals are respectively multiple of 11 and 7). Respective totals for **T** and **C** are multiple of 13 In 1 near. (**55 and 71 times 13 in 1 near**). (these totals are respectively multiple of 11 in 1 near and of 7 in 2 near).

co	oded	protons number	2 bases G or/	coded	protons number
L	YS	80	AGG	ARG	94
ASN		70	AGC	SER	56
A	RG	94	ACC	THR	64
THE		64	ACG	THR	64
	MET	80	GGA	GLY	40
с 👘	ILE	72	GGT	GLY	40
	SER	56	GAG	GLU	78
СТ	THR	64	GTG	VAL	64
GAA	GLU	78	GCA	ALA	48
GAT	ASP	70	GCT	ALA	48
GTT	VAL	64	GAC	ASP	70
GTA	VAL	64	GTC	VAL	64
first	base A = 66	x 13	first	base G = 56	i x 13
	Tota	l number (first	ase A or G) = 122	x 13	
odon	coded	protons number	codon	coded	protons number
TG	LEU	72	TGG	TRP	108
2	PHE	88	TGC	CYS	64
GT	CYS	64	TCC	SER	56
СТ	SER	56	TCG	SER	56
AG	-	0	CCA	PRO	63
TAC	TYR	96	CCT	PRO	63
rga 👘	-	0	CAC	HIS	82
TCA	SER	56	CTC	LEU	72
	GLN	78	CGA	ARG	94
CAA			CGT	ARG	94
	HIS	82			
caa Cat		82 72	CAG	GLN	78
аа Ат Тт	HIS		CAG CTG	GLN LEU	78 72
CAA CAT CTT CTA	HIS LEU LEU ase T = (55 X	72 72 13) + 1	CTG first b	LEU ase C = (71 ×	72
CAA CAT CTT CTA	HIS LEU LEU ase T = (55 X	72 72 13) + 1	CTG	LEU ase C = (71 ×	72

Phenomena representation in the genetic code table (only with grouping 2 values):

Symmetric and asymmetric distribution of the 20 amino acids

The distribution of amino acids in the two groupings is, in same time, **perfectly symmetric** and **perfectly asymmetric** :

VERY IMPORTANT ESTABLISHED PHENOMENA				
Symmetric and asymmetric phenomena	in the repartition of the 20 amino acids			
GROUPING 1 (group 1 and group 4)	GROUPING 2 (group 2 and group 3)			
10 amino acids are represented (50%)	10 other represented amino acids			
(+ 1 STOP)	(+ 1 STOP)			
No amino acid in common in both groups (group 1 and group 4) and	All the amino acids in common in both groups (group 2 and group 3) except			
Two amino acids are represented twice in the other grouping :	Two amino acids are represented only in one group :			
LEU in groups 3 and 2 ARG in groups 2 and 3	TRP only in group 3 MET only in group 2			
All the amino acids are represented in	No amino acid are represented in both			
both groupings:	groupings:			
group 1 present in group 2 (other grouping)	group 2 (except MET) in group 3 (same grouping)			
and	and			
group 4 present in group 3 (other grouping)	group 3 (except TRP) in group 2 (same grouping)			

The 26 great codons

In conclusion of this study, a new presentation of the genetic code suggesting to classifying codons and coded in 26 entities: a great codon for a (great) coded . So for example the arginine is not coded 6 times but rather twice by:

A great codon consisted of 2 codons (AGA and AGG) A great codon consisted of 4 codons (CGA, CGG, CGT and CGC)

This table of the genetic code is **symmetric** when one considers the number of coded contained in each of 16 table box. This table contains **26 great codons** among which 13 in both first columns (first DNA base **A and G**) and 13 in both last ones (first DNA base **T and C**):

The columns of DNA bases **A and T** and DNA bases **G and C** also contain the same number of great codons : Columns A and T: 1 box of 1, 2 boxes of 2 and 1 box of 3. Columns G and C: 3 boxes of 1, and 1 box of 2.

CONCLUSION

It clearly appears in this study that the universal genetic code answers numerical constraints. These numerical constraints connect the configuration of codons with the atomic structure of the respectively coded amino acids.

This study reveals very many phenomena of multiples of prime numbers connecting:

➡ the codons configuration (triplets of DNA bases)

to

➡ the number of protons (or atomic number) constituting the coded amino acids.

This study also reveals very many facts of symmetry in the distribution of these phenomena. These phenomena observed relate to the whole of the genetic code and are often complementary systematically and very symmetrically.

These phenomena imply the prime numbers:

➡ 7, 11 and 13.

A very important observation revealed in this study, highlights the association of:

➡ phenomena of concentration of multiples of the prime number 7 towards coding of the amino acid coded proline

to

➡ the a number of times that an amino acid is coded.

This study largely draws the attention to this particular amino acid of which the general structure is the only one to be distinguished from the other amino acids. All the other amino acids (included in the universal genetic code) have a radical including an odd number of protons. **The proline is the only amino acid to have an even number of it.**

This study also shows the following rule:

Except a named group **the rebel group** (ATA , ATG, TGG and TGA) with a total protons number multiple of the prime number 13, the codons code for the same coded

➡ if and only if their last base is A or G

➡ if and only if their last base is T or C

This study also proposes a reorganization of the table of the universal genetic code while gathering code them and coded in twenty-six entities. These entities (distributed symmetrically in the table of the genetic code) gather a great codon and a great coded. Thus, this new table of the genetic code includes 26 great codons connected with 26 great coded of which:

- ➡ 8 great codons-coded of 4 codons-coded
- ➡ 14 great codons-coded of 2 codons-coded
- ➡ 4 great codons-coded of 1 codon-coded